Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la décomposition de la valeur singulière et l'analyse des composantes principales pour la réduction de la dimensionnalité, avec des applications de visualisation et d'efficacité.
Couvre l'exploitation efficace des données grâce à des méthodes de clustering et à l'optimisation des rendements du marché à l'aide du clustering d'actifs.
Couvre les matrices définies non négatives, les matrices de covariance et l'analyse en composantes principales pour une réduction optimale des dimensions.
Introduit l'analyse de corrélation canonique pour trouver des caractéristiques communes dans des ensembles de données séparés, s'étendant aux données multimodales et aux caractéristiques non linéaires.
Couvre la théorie des probabilités de base, la théorie de la détection des signaux, les statistiques et les méta-statistiques, expliquant la taille des effets, la puissance et les tests d'hypothèses.