Deep brain stimulation (DBS) is a neurosurgical procedure involving the placement of a medical device called a neurostimulator, which sends electrical impulses, through implanted electrodes, to specific targets in the brain (the brain nucleus) for the treatment of movement disorders, including Parkinson's disease, essential tremor, dystonia, and other conditions such as obsessive-compulsive disorder (OCD) and epilepsy. While its underlying principles and mechanisms are not fully understood, DBS directly changes brain activity in a controlled manner.
DBS has been approved by the Food and Drug Administration as a treatment for essential tremor and Parkinson's disease (PD) since 1997. DBS was approved for dystonia in 2003, obsessive–compulsive disorder (OCD) in 2009, and epilepsy in 2018. DBS has been studied in clinical trials as a potential treatment for chronic pain for various affective disorders, including major depression. It is one of few neurosurgical procedures that allow blinded studies.
DBS is used to manage some of the symptoms of Parkinson's disease that cannot be adequately controlled with medications. PD is treated by applying high-frequency (> 100 Hz) stimulation to three target structures, namely to the ventrolateral thalamus, internal pallidum, and subthalamic nucleus (STN) to mimic the clinical effects of lesioning. It is recommended for people who have PD with motor fluctuations and tremors inadequately controlled by medication, or to those who are intolerant to medication, as long as they do not have severe neuropsychiatric problems. Four areas of the brain have been treated with neural stimulators in PD. These are the globus pallidus internus, thalamus, subthalamic nucleus and the pedunculopontine nucleus. However, most DBS surgeries in routine practice target either the globus pallidus internus or the Subthalamic nucleus.
DBS of the globus pallidus internus reduces uncontrollable shaking movements called dyskinesias. This enables a patient to take adequate quantities of medications (especially levodopa), thus leading to better control of symptoms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
Neural interfaces (NI) are bioelectronic systems that interface the nervous system to digital technologies. This course presents their main building blocks (transducers, instrumentation & communicatio
Neuromodulation is an expending field especially in human translational neuroscience and neurotechnology. This course will introduce to different approaches / technologies for neuromodulation, their u
Parkinson's disease (PD), or simply Parkinson's, is a chronic degenerative disorder of the central nervous system that affects both the motor system and non-motor systems. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms become more common. Early symptoms are tremor, rigidity, slowness of movement, and difficulty with walking. Problems may also arise with cognition, behaviour, sleep, and sensory systems. Parkinson's disease dementia becomes common in advanced stages of the disease.
Neurostimulation is the purposeful modulation of the nervous system's activity using invasive (e.g. microelectrodes) or non-invasive means (e.g. transcranial magnetic stimulation or transcranial electric stimulation, tES, such as tDCS or transcranial alternating current stimulation, tACS). Neurostimulation usually refers to the electromagnetic approaches to neuromodulation.
Dystonia is a neurological hyperkinetic movement disorder in which sustained or repetitive muscle contractions result in twisting and repetitive movements or abnormal fixed postures. The movements may resemble a tremor. Dystonia is often intensified or exacerbated by physical activity, and symptoms may progress into adjacent muscles. The disorder may be hereditary or caused by other factors such as birth-related or other physical trauma, infection, poisoning (e.g.
Reinforcement feedback can improve motor learning, but the underlying brain mechanisms remain underexplored. In particular, the causal contribution of specific patterns of oscillatory activity within the human striatum is unknown. To address this question, ...
Electrical stimulation of the visual nervous system could improve the quality of life of patients affected by acquired blindness by restoring some visual sensations, but requires careful optimization of stimulation parameters to produce useful perceptions. ...
Electrical stimulation of the nervous system has emerged as a promising assistive technology in case of many injuries and illnesses across various parts of the nervous system. In particular, the invasive neuromodulation of the peripheral nervous system see ...