In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles.
A rational map from one variety (understood to be irreducible) to another variety , written as a dashed arrow X Y, is defined as a morphism from a nonempty open subset to . By definition of the Zariski topology used in algebraic geometry, a nonempty open subset is always dense in , in fact the complement of a lower-dimensional subset. Concretely, a rational map can be written in coordinates using rational functions.
A birational map from X to Y is a rational map f : X ⇢ Y such that there is a rational map Y ⇢ X inverse to f. A birational map induces an isomorphism from a nonempty open subset of X to a nonempty open subset of Y, and vice versa: an isomorphism between nonempty open subsets of X, Y by definition gives a birational map f : X ⇢ Y. In this case, X and Y are said to be birational, or birationally equivalent. In algebraic terms, two varieties over a field k are birational if and only if their function fields are isomorphic as extension fields of k.
A special case is a birational morphism f : X → Y, meaning a morphism which is birational. That is, f is defined everywhere, but its inverse may not be. Typically, this happens because a birational morphism contracts some subvarieties of X to points in Y.
A variety X is said to be rational if it is birational to affine space (or equivalently, to projective space) of some dimension. Rationality is a very natural property: it means that X minus some lower-dimensional subset can be identified with affine space minus some lower-dimensional subset.
For example, the circle with equation in the affine plane is a rational curve, because there is a rational map f : ⇢ X given by
which has a rational inverse g: X ⇢ given by
Applying the map f with t a rational number gives a systematic construction of Pythagorean triples.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties.
In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space.
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
Related units (1)
We prove that if (X, A) is a threefold pair with mild singularities such that -(KX + A) is nef, then the numerical class of -(KX + A) is effective. ...
Berlin2023
We use birational geometry to show that the existence of rational points on proper rationally connected varieties over fields of characteristic 0 is a consequence of the existence of rational points on terminal Fano varieties. We discuss several consequenc ...
We show that mixed-characteristic and equicharacteristic small deformations of 3-dimensional canonical (resp., terminal) singularities with perfect residue field of characteristic p>5 are canonical (resp., terminal). We discuss applications to arithmetic a ...