In situ electron microscopy is an investigatory technique where an electron microscope is used to watch a sample's response to a stimulus in real time. Due to the nature of the high-energy beam of electrons used to image a sample in an electron microscope, microscopists have long observed that specimens are routinely changed or damaged by the electron beam. Starting in the 1960s, and using transmission electron microscopes (TEMs), scientists made deliberate attempts to modify materials while the sample was in the specimen chamber, and to capture images through time of the induced damages.
Also in the 1960s, materials scientists using TEMs began to study the response of electron-transparent metal samples to irradiation by the electron beam. This was in order to understand more about metal fatigue during aviation and space flight. The experiments were performed on instruments with high accelerating voltages; the image resolution was low compared to the sub-nanometer resolution available with modern TEMs.
Improvements in electron microscopy from the 1960s onwards focused on increasing the spatial resolution. This required increased stability for the entire imaging platform, but particularly for the area around the specimen stage. Improved image-capture systems using charge-coupled device cameras and advances in specimen stages coupled with the higher resolution led to creating systems devoted to applying stimuli to samples in specialized holders, and capturing multiple frames or videos of the samples' responses.
In addition to materials samples, in situ electron microscopy is performed on biological specimens, and is used to conduct experiments involving mechanical, chemical, thermal, and electrical responses. Early experiments mostly used TEMs, because the image is captured in a single frame, whereas the scanning electron microscope must move or scan across the sample while the stimuli is being applied, altering the sample.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux m
Modern Scanning Electron Microscopes, when combined with Focused Ion Beams (Dual beam FIB-SEM), provide a larger number of multimodal imaging and analysis/characterisation modes at the nano- and micro
A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that contain information about the surface topography and composition of the sample. The electron beam is scanned in a raster scan pattern, and the position of the beam is combined with the intensity of the detected signal to produce an image.
Explores Environmental Scanning Electron Microscopy (ESEM) for imaging diverse samples without preparation, covering electron beam scanning, pressure manipulation, electron scattering, X-ray analysis, and phase transitions.
, , , ,
Understanding metal surface reconstruction is of the utmost importance in electrocatalysis, as this phenomenon directly affects the nature of available active sites. However, its dynamic nature renders surface reconstruction notoriously difficult to study. ...
Observing the fast dynamics of nanoscale systems is crucial in order to understand and ultimately control their behavior. Characterizing these dynamic processes requires techniques with atomic spatial resolution and a temporal resolution that matches the t ...
Nanostructured graphitic materials, including graphene hosting Å to nanometer-sized pores, have attracted attention for various applications such as separations, sensors, and energy storage. Graphene with Å-scale pores is a promising next-generation materi ...