Concept

Linear fractional transformation

Summary
In mathematics, a linear fractional transformation is, roughly speaking, an invertible transformation of the form The precise definition depends on the nature of a, b, c, d, and z. In other words, a linear fractional transformation is a transformation that is represented by a fraction whose numerator and denominator are linear. In the most basic setting, a, b, c, d, and z are complex numbers (in which case the transformation is also called a Möbius transformation), or more generally elements of a field. The invertibility condition is then ad – bc ≠ 0. Over a field, a linear fractional transformation is the restriction to the field of a projective transformation or homography of the projective line. When a, b, c, d are integer (or, more generally, belong to an integral domain), z is supposed to be a rational number (or to belong to the field of fractions of the integral domain. In this case, the invertibility condition is that ad – bc must be a unit of the domain (that is 1 or −1 in the case of integers). In the most general setting, the a, b, c, d and z are elements of a ring, such as square matrices. An example of such linear fractional transformation is the Cayley transform, which was originally defined on the 3 × 3 real matrix ring. Linear fractional transformations are widely used in various areas of mathematics and its applications to engineering, such as classical geometry, number theory (they are used, for example, in Wiles's proof of Fermat's Last Theorem), group theory, control theory. In general, a linear fractional transformation is a homography of P(A), the projective line over a ring A. When A is a commutative ring, then a linear fractional transformation has the familiar form where a, b, c, d are elements of A such that ad – bc is a unit of A (that is ad – bc has a multiplicative inverse in A) In a non-commutative ring A, with (z, t) in A2, the units u determine an equivalence relation An equivalence class in the projective line over A is written U[z : t], where the brackets denote projective coordinates.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
MATH-110(b): Advanced linear algebra I
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
AR-301(aj): Studio BA5 (Baumgartner et Camponovo)
STAY A LITTLE LONGER étudie les potentialités du bâti existant. Les outils de représentation du projet de transformation -Existant/Noir, Démolition/Jaune, Nouveau/Rouge- structureront l'exploration ar
Show more
Related publications (36)