In projective geometry, a collineation is a one-to-one and onto map (a bijection) from one projective space to another, or from a projective space to itself, such that the of collinear points are themselves collinear. A collineation is thus an isomorphism between projective spaces, or an automorphism from a projective space to itself. Some authors restrict the definition of collineation to the case where it is an automorphism. The set of all collineations of a space to itself form a group, called the collineation group. Simply, a collineation is a one-to-one map from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. One may formalize this using various ways of presenting a projective space. Also, the case of the projective line is special, and hence generally treated differently. For a projective space defined in terms of linear algebra (as the projectivization of a vector space), a collineation is a map between the projective spaces that is order-preserving with respect to inclusion of subspaces. Formally, let V be a vector space over a field K and W a vector space over a field L. Consider the projective spaces PG(V) and PG(W), consisting of the vector lines of V and W. Call D(V) and D(W) the set of subspaces of V and W respectively. A collineation from PG(V) to PG(W) is a map α : D(V) → D(W), such that: α is a bijection. A ⊆ B ⇔ α(A) ⊆ α(B) for all A, B in D(V). Given a projective space defined axiomatically in terms of an incidence structure (a set of points P, lines L, and an incidence relation I specifying which points lie on which lines, satisfying certain axioms), a collineation between projective spaces thus defined then being a bijective function f between the sets of points and a bijective function g between the set of lines, preserving the incidence relation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
MATH-478: Dispersive PDEs
This course will give an introduction to some aspects of nonlinear dispersive partial differential equations. These are time evolution problems that arise in many contexts in physics, such as quantum
MATH-111(a): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
Afficher plus
Publications associées (11)
Concepts associés (16)
Géométrie
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Théorème de Pappus
vignette|Configuration de Pappus : Dans l'hexagone AbCaBc, où les points A, B, C, d'une part et a, b, c d'autre part, sont alignés, les points X, Y, Z le sont aussi. Le théorème de Pappus est un théorème de géométrie concernant l'alignement de trois points : si on considère trois points alignés A, B, C et trois autres points également alignés a, b, c, les points d'intersection des droites (Ab)-(Ba), (Ac)-(Ca), et (Bc)-(Cb) sont également alignés.
Sphère de Riemann
En mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière que certaines expressions mathématiques deviennent convergentes et élégantes, du moins dans certains contextes. Déjà envisagée par le mathématicien Carl Friedrich Gauss, elle est baptisée du nom de son élève Bernhard Riemann. Ce plan s'appelle également la droite projective complexe, dénoté .
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.