In mathematics, the ratio test is a test (or "criterion") for the convergence of a series
where each term is a real or complex number and an is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.
The usual form of the test makes use of the limit
The ratio test states that:
if L < 1 then the series converges absolutely;
if L > 1 then the series diverges;
if L = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.
It is possible to make the ratio test applicable to certain cases where the limit L fails to exist, if limit superior and limit inferior are used. The test criteria can also be refined so that the test is sometimes conclusive even when L = 1. More specifically, let
Then the ratio test states that:
if R < 1, the series converges absolutely;
if r > 1, the series diverges;
if for all large n (regardless of the value of r), the series also diverges; this is because is nonzero and increasing and hence an does not approach zero;
the test is otherwise inconclusive.
If the limit L in () exists, we must have L = R = r. So the original ratio test is a weaker version of the refined one.
Consider the series
Applying the ratio test, one computes the limit
Since this limit is less than 1, the series converges.
Consider the series
Putting this into the ratio test:
Thus the series diverges.
Consider the three series
The first series (1 + 1 + 1 + 1 + ⋯) diverges, the second one (the one central to the Basel problem) converges absolutely and the third one (the alternating harmonic series) converges conditionally. However, the term-by-term magnitude ratios of the three series are respectively and . So, in all three cases, one has that the limit is equal to 1. This illustrates that when L = 1, the series may converge or diverge, and hence the original ratio test is inconclusive. In such cases, more refined tests are required to determine convergence or divergence.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Cette classe est donnée sous forme inversée.
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series. It depends on the quantity where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one. It is particularly useful in connection with power series. The root test was developed first by Augustin-Louis Cauchy who published it in his textbook Cours d'analyse (1821). Thus, it is sometimes known as the Cauchy root test or Cauchy's radical test.
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted The nth partial sum Sn is the sum of the first n terms of the sequence; that is, A series is convergent (or converges) if the sequence of its partial sums tends to a limit; that means that, when adding one after the other in the order given by the indices, one gets partial sums that become closer and closer to a given number.
In mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute convergence, interval of convergence or divergence of an infinite series . If the limit of the summand is undefined or nonzero, that is , then the series must diverge. In this sense, the partial sums are Cauchy only if this limit exists and is equal to zero. The test is inconclusive if the limit of the summand is zero. This is also known as the nth-term test, test for divergence, or the divergence test.
Codes of practice can be overly conservative, particularly for the shear resistance of reinforced concrete beams with shear reinforcement when large loads act close to supports. This thesis addresses the topic by proposing a refined design approach based o ...
EPFL2024
, ,
The prediction of departure from nucleate boiling (DNB) has always been a crucial aspect of thermal-hydraulic codes for the analysis of Light Water Reactors. In this paper, GeN-Foam, a multi-physics code developed based on OpenFOAM, has been enhanced to in ...
Hydropower plants play a crucial role in the power system facing ambitious renewable energy targets. Due to their inherent controllability, they are well suited to provide flexibility to the grid. However, an increased flexibility provision leads to a prol ...