In mathematics, particularly in order theory, an upper bound or majorant of a subset S of some preordered set (K, ≤) is an element of K that is greater than or equal to every element of S. Dually, a lower bound or minorant of S is defined to be an element of K that is less than or equal to every element of S. A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound. The terms bounded above (bounded below) are also used in the mathematical literature for sets that have upper (respectively lower) bounds. For example, 5 is a lower bound for the set S = (as a subset of the integers or of the real numbers, etc.), and so is 4. On the other hand, 6 is not a lower bound for S since it is not smaller than every element in S. The set S = has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on convention). An infinite subset of the natural numbers cannot be bounded from above. An infinite subset of the integers may be bounded from below or bounded from above, but not both. An infinite subset of the rational numbers may or may not be bounded from below, and may or may not be bounded from above. Every finite subset of a non-empty totally ordered set has both upper and lower bounds. The definitions can be generalized to functions and even to sets of functions. Given a function with domain D and a preordered set (K, ≤) as codomain, an element y of K is an upper bound of if y ≥ (x) for each x in D. The upper bound is called sharp if equality holds for at least one value of x. It indicates that the constraint is optimal, and thus cannot be further reduced without invalidating the inequality. Similarly, a function g defined on domain D and having the same codomain (K, ≤) is an upper bound of , if g(x) ≥ (x) for each x in D.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (14)
CS-439: Optimization for machine learning
This course teaches an overview of modern optimization methods, for applications in machine learning and data science. In particular, scalability of algorithms to large datasets will be discussed in t
MATH-101(en): Analysis I (English)
We study the fundamental concepts of analysis, calculus and the integral of real-valued functions of a real variable.
Show more
Related lectures (39)
Math-101(en) / Min/Max, Inf/Sup
Covers minimum, maximum, infimum, and supremum concepts in real numbers with examples and proofs.
Subtyping and Type Calculus
Explores subtyping, type calculus, and type bounds calculation in a system with subtyping, guiding through exercises and proofs step by step.
Lattices for Abstract Interpretation
Covers lattices, abstract interpretation, fixpoint analysis, Hoare logic, and partial orders with extreme elements.
Show more
Related publications (171)
Related concepts (16)
Real number
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
Rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction \tfrac p q of two integers, a numerator p and a non-zero denominator q. For example, \tfrac{-3}{7} is a rational number, as is every integer (e.g., 5 = 5/1). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface Q, or blackboard bold \Q. A rational number is a real number.
Order theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.
Show more
Related MOOCs (5)
Numerical Analysis for Engineers
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Numerical Analysis for Engineers
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Numerical Analysis for Engineers
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.