In , a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary . It is the categorical construction to the equalizer. A coequalizer is a colimit of the diagram consisting of two objects X and Y and two parallel morphisms f, g : X → Y. More explicitly, a coequalizer of the parallel morphisms f and g can be defined as an object Q together with a morphism q : Y → Q such that q ∘ f = q ∘ g. Moreover, the pair (Q, q) must be universal in the sense that given any other such pair (Q′, q′) there exists a unique morphism u : Q → Q′ such that u ∘ q = q′. This information can be captured by the following commutative diagram: As with all universal constructions, a coequalizer, if it exists, is unique up to a unique isomorphism (this is why, by abuse of language, one sometimes speaks of "the" coequalizer of two parallel arrows). It can be shown that a coequalizer q is an epimorphism in any category. In the , the coequalizer of two functions f, g : X → Y is the quotient of Y by the smallest equivalence relation such that for every , we have . In particular, if R is an equivalence relation on a set Y, and r1, r2 are the natural projections (R ⊂ Y × Y) → Y then the coequalizer of r1 and r2 is the quotient set Y/R. (See also: quotient by an equivalence relation.) The coequalizer in the is very similar. Here if f, g : X → Y are group homomorphisms, their coequalizer is the quotient of Y by the normal closure of the set For abelian groups the coequalizer is particularly simple. It is just the factor group Y / im(f – g). (This is the cokernel of the morphism f – g; see the next section). In the , the circle object can be viewed as the coequalizer of the two inclusion maps from the standard 0-simplex to the standard 1-simplex. Coequalizers can be large: There are exactly two functors from the category 1 having one object and one identity arrow, to the category 2 with two objects and one non-identity arrow going between them.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-436: Homotopical algebra
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Concepts associés (16)
Catégorie des espaces topologiques
En mathématiques, la catégorie des espaces topologiques est une construction qui rend compte abstraitement des propriétés générales observées dans l'étude des espaces topologiques. Ce n'est pas la seule catégorie qui possède les espaces topologiques comme objet, et ses propriétés générales sont trop faibles ; cela motive la recherche de « meilleures » catégories d'espaces. C'est un exemple de catégorie topologique.
Diagramme (théorie des catégories)
En théorie des catégories, un diagramme est une collection d'objets et de flèches d'une catégorie donnée. En principe, un diagramme n'est pas un objet mathématique mais seulement une figure, destinée à faciliter la lecture d'un raisonnement. En pratique, on se sert souvent des diagrammes comme de symboles abréviateurs, qui évitent de nommer tous les objets et les flèches que l'on veut considérer; on dit souvent que "considérons le diagramme ci-dessus" au lieu de dire par exemple dans la catégorie des ensembles: "considérons quatre ensembles et une application de dans .
Catégorie complète
En mathématiques, une catégorie complète est une catégorie dans laquelle toutes les petites limites existent. Autrement dit, une catégorie C est complète si tout diagramme F : J → C (où J est petite) a une limite dans C. Duallement, une catégorie cocomplète est une catégorie dans laquelle toutes les petites colimites existent. Une catégorie bicomplète est une catégorie à la fois complète et cocomplète. L'existence de toutes les limites (même lorsque J est une classe propre) est trop forte pour être pertinente en pratique.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.