Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En mathématiques, une catégorie complète est une catégorie dans laquelle toutes les petites limites existent. Autrement dit, une catégorie C est complète si tout diagramme F : J → C (où J est petite) a une limite dans C. Duallement, une catégorie cocomplète est une catégorie dans laquelle toutes les petites colimites existent. Une catégorie bicomplète est une catégorie à la fois complète et cocomplète. L'existence de toutes les limites (même lorsque J est une classe propre) est trop forte pour être pertinente en pratique. Toute catégorie possédant cette propriété est nécessairement une catégorie mince : pour deux objets quelconques, il peut y avoir au plus un morphisme d'un objet à l'autre. Une forme plus faible de complétude est celle de complétude finie. Une catégorie est finiment complète si toutes les limites finies existent (c'est-à-dire les limites des diagrammes indexés par une catégorie J ayant un ensemble fini d'objets). Duallement, une catégorie est finiment cocomplète si toutes les colimites finies existent. Il découle du théorème d'existence des limites qu'une catégorie est complète si et seulement si elle a des égaliseurs (de toutes les paires de morphismes) et tous les (petits) produits. Puisque les égaliseurs peuvent être construits à partir de produits fibrés et de produits binaires (considérer le produit fibré de (f, g) le long de la diagonale Δ), une catégorie est complète si et seulement si elle a des produits fibrés et des produits. Duallement, une catégorie est cocomplète si et seulement si elle a des coégaliseurs et tous les (petits) coproduits, ou, de manière équivalente, des sommes amalgamées et des coproduits. La complétude finie peut être caractérisée de plusieurs façons. Pour une catégorie C, les propriétés suivantes sont équivalentes : C est finiment complète, C a les égaliseurs et tous les produits finis, C a les égaliseurs, les produits binaires et un objet final, C a des produits fibrés et un objet final. Les assertions duales sont également équivalentes.
Jian Wang, Matthias Finger, Lesya Shchutska, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Mingkui Wang, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Thomas Muller, Giuseppe Codispoti, Hua Zhang, Siyuan Wang, Jessica Prisciandaro, Peter Hansen, Daniel Gonzalez, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Kun Shi, Wei Shi, Abhisek Datta, Thomas Berger, Federica Legger, Alessandro Caratelli, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Vladimir Petrov, Francesco Fiori, Quentin Python, Meng Xiao, Sourav Sen, Viktor Khristenko, Marco Trovato, Fan Xia, Xiao Wang, Bibhuprasad Mahakud, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Maren Tabea Meinhard, Giorgia Rauco, Ali Harb, Benjamin William Allen, Long Wang, Pratyush Das, Wenyu Zhang, Miao Hu, Anton Petrov, Lei Li, Amr Mohamed, Valérie Scheurer, Giovanni Mocellin