Soient E et F des espaces mesurables munis de leurs tribus respectives E et F. Une fonction f : E → F est dite (E, F)-mesurable si la par f de la tribu F est incluse dans E, c'est-à-dire si : L'identité, la composée de deux fonctions mesurables, sont mesurables. Les fonctions mesurables fournissent donc à la classe des espaces mesurables une structure de catégorie. Si F est l'ensemble des réels et si F est sa tribu borélienne, on dira simplement que f est une fonction mesurable sur (E, E). La tribu borélienne sur R étant engendrée (par exemple) par l'ensemble des demi-droites de la forme ]a , +∞[, le lemme de transport assure que f est mesurable sur (E, E) si et seulement si l'image réciproque par f de chacune de ces demi-droites est dans E. Par exemple : toute fonction réelle d'une variable réelle qui est monotone est borélienne. Pour les fonctions à valeurs dans la droite achevée = R ∪ {–∞, +∞}, un résultat analogue se vérifie avec les intervalles ]a , +∞]. Soient E un espace mesurable et (f) une suite de fonctions mesurables de E dans R (ou même dans ). Alors la fonction f définie par f = sup f (à valeurs dans ) est mesurable. En effet, l'image réciproque par f de ]a , +∞] peut s'écrire et cet ensemble est une réunion dénombrable d'éléments de E, donc un ensemble mesurable. Par passage aux opposés, on en déduit que, si les fonctions f de E dans sont toutes mesurables, alors la fonction inf f l'est également. On peut alors montrer que les fonctions limites inférieure et supérieure liminf f et limsup f sont, elles aussi, mesurables. En particulier : les quatre dérivées de Dini d'une fonction mesurable de R dans R sont elles-mêmes mesurables ; toute limite simple de fonctions mesurables est mesurable (ce qui d'ailleurs se démontre directement et plus généralement pour des fonctions à valeurs dans un espace métrique – mais pas à valeurs dans un espace topologique quelconque) ; toute fonction dérivée est mesurable. Si (E, E) est un espace métrisable séparable muni de sa tribu borélienne, toute fonction mesurable sur E (à valeurs réelles) et bornée est limite monotone de fonctions bornées continues.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (16)
Tribu borélienne
vignette|Normal distribution pdf. En mathématiques, la tribu borélienne (également appelée tribu de Borel ou tribu des boréliens) sur un espace topologique est la plus petite tribu sur contenant tous les ensembles ouverts. Les éléments de la tribu borélienne sont appelés des boréliens. Le concept doit son nom à Émile Borel, qui a publié en 1898 une première exposition de la tribu borélienne de la droite réelle. La tribu borélienne peut, de manière équivalente, se définir comme la plus petite tribu qui contient tous les sous-ensembles fermés de .
Espace mesurable
Un espace mesurable (en théorie de la mesure), également appelé espace probabilisable (en théorie des probabilités), est un couple où est un ensemble et une tribu sur . Les éléments de sont alors appelés des ensembles mesurables de . Un espace mesurable est rarement utilisé seul : le plus souvent, il est complété d'une mesure en vue de construire un espace mesuré . En théorie des probabilités, on utilise une terminologie spécifique. Un espace mesurable est appelé un espace probabilisable, l'ensemble est appelé l'univers et les éléments de la tribu sont appelés événements.
Analyse (mathématiques)
L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.