Un espace mesurable (en théorie de la mesure), également appelé espace probabilisable (en théorie des probabilités), est un couple où est un ensemble et une tribu sur . Les éléments de sont alors appelés des ensembles mesurables de . Un espace mesurable est rarement utilisé seul : le plus souvent, il est complété d'une mesure en vue de construire un espace mesuré . En théorie des probabilités, on utilise une terminologie spécifique. Un espace mesurable est appelé un espace probabilisable, l'ensemble est appelé l'univers et les éléments de la tribu sont appelés événements. L'espace probabilisable , une fois complété d'une mesure de probabilité (c'est-à-dire une mesure telle que ) forme un espace probabilisé . Si un ensemble quelconque : où est l'ensemble des parties de est un espace mesurable. est un espace mesurable, où est la tribu grossière. Si est un espace topologique, , où est la tribu de Borel de , est un espace mesurable. Certaines sources relativement anciennes proposent des définitions marginalement différentes : pour , p. 73, un espace mesurable est un ensemble muni d'un σ-anneau à unité ; pour , p. 35 c'est un ensemble muni d'un σ-anneau (sans condition d'existence d'une unité). Les relations entre les trois définitions sont exposées dans l'ouvrage de S. Berberian, p. 35-36.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
MATH-432: Probability theory
The course is based on Durrett's text book Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
MATH-205: Analysis IV - Lebesgue measure, Fourier analysis
Learn the basis of Lebesgue integration and Fourier analysis
COM-417: Advanced probability and applications
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
Séances de cours associées (32)
Théorie des probabilités: Lecture 2
Explore les modèles de jouets, les sigma-algèbres, les variables aléatoires à valeur T, les mesures et l'indépendance dans la théorie des probabilités.
Espaces de mesure : intégration et inégalités
Les couvertures mesurent les espaces, l'intégration, la propriété Radon-Nikodym et les inégalités comme Jensen, Hlder et Minkowski.
Infinite Coin lance : l'indépendance
Explore l'indépendance dans des lancers de pièces infinis, des jeux de couverture, des changements et une invariance en T.
Afficher plus
Publications associées (1)

Electrical energy balance contest in Solar Decathlon Europe 2012

Inaki Navarro Oiza

Solar Decathlon Europe (SDE) is an international multidisciplinary competition in which 20 university teams build and operate energy-efficient solar-powered houses. The aim of SDE is not only scientific but also educational and divulgative, making visitors ...
Elsevier Science Sa2014
Concepts associés (3)
Fonction mesurable
Soient E et F des espaces mesurables munis de leurs tribus respectives E et F. Une fonction f : E → F est dite (E, F)-mesurable si la par f de la tribu F est incluse dans E, c'est-à-dire si : L'identité, la composée de deux fonctions mesurables, sont mesurables. Les fonctions mesurables fournissent donc à la classe des espaces mesurables une structure de catégorie. Si F est l'ensemble des réels et si F est sa tribu borélienne, on dira simplement que f est une fonction mesurable sur (E, E).
Tribu (mathématiques)
En mathématiques, une tribu ou σ-algèbre (lire sigma-algèbre) ou plus rarement corps de Borel sur un ensemble X est un ensemble non vide de parties de X, stable par passage au complémentaire et par union dénombrable (donc aussi par intersection dénombrable). Les tribus permettent de définir rigoureusement la notion d'ensemble mesurable. Progressivement formalisées pendant le premier tiers du , les tribus constituent le cadre dans lequel s'est développée la théorie de la mesure.
Mesure (mathématiques)
En mathématiques, une mesure positive (ou simplement mesure quand il n'y a pas de risque de confusion) est une fonction qui associe une grandeur numérique à certains sous-ensembles d'un ensemble donné. Il s'agit d'un important concept en analyse et en théorie des probabilités. Intuitivement, la mesure d'un ensemble ou sous-ensemble est similaire à la notion de taille, ou de cardinal pour les ensembles discrets. Dans ce sens, la mesure est une généralisation des concepts de longueur, aire ou volume dans des espaces de dimension 1, 2 ou 3 respectivement.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.