In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much of the work in homological algebra is designed to cope with functors that fail to be exact, but in ways that can still be controlled. Let P and Q be abelian categories, and let F: P→Q be a covariant additive functor (so that, in particular, F(0) = 0). We say that F is an exact functor if whenever is a short exact sequence in P then is a short exact sequence in Q. (The maps are often omitted and implied, and one says: "if 0→A→B→C→0 is exact, then 0→F(A)→F(B)→F(C)→0 is also exact".) Further, we say that F is left-exact if whenever 0→A→B→C→0 is exact then 0→F(A)→F(B)→F(C) is exact; right-exact if whenever 0→A→B→C→0 is exact then F(A)→F(B)→F(C)→0 is exact; half-exact if whenever 0→A→B→C→0 is exact then F(A)→F(B)→F(C) is exact. This is distinct from the notion of a topological half-exact functor. If G is a contravariant additive functor from P to Q, we similarly define G to be exact if whenever 0→A→B→C→0 is exact then 0→G(C)→G(B)→G(A)→0 is exact; left-exact if whenever 0→A→B→C→0 is exact then 0→G(C)→G(B)→G(A) is exact; right-exact if whenever 0→A→B→C→0 is exact then G(C)→G(B)→G(A)→0 is exact; half-exact if whenever 0→A→B→C→0 is exact then G(C)→G(B)→G(A) is exact. It is not always necessary to start with an entire short exact sequence 0→A→B→C→0 to have some exactness preserved. The following definitions are equivalent to the ones given above: F is exact if and only if A→B→C exact implies F(A)→F(B)→F(C) exact; F is left-exact if and only if 0→A→B→C exact implies 0→F(A)→F(B)→F(C) exact (i.e. if "F turns kernels into kernels"); F is right-exact if and only if A→B→C→0 exact implies F(A)→F(B)→F(C)→0 exact (i.e. if "F turns cokernels into cokernels"); G is left-exact if and only if A→B→C→0 exact implies 0→G(C)→G(B)→G(A) exact (i.e.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (13)
MATH-436: Homotopical algebra
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
MATH-211: Algebra II - groups
This course deals with group theory, with particular emphasis on group actions and notions of category theory.
ME-523: Nonlinear Control Systems
Les systèmes non linéaires sont analysés en vue d'établir des lois de commande. On présente la stabilité au sens de Lyapunov, ainsi que des méthodes de commande géométrique (linéarisation exacte). Div
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.