In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much of the work in homological algebra is designed to cope with functors that fail to be exact, but in ways that can still be controlled.
Let P and Q be abelian categories, and let F: P→Q be a covariant additive functor (so that, in particular, F(0) = 0). We say that F is an exact functor if whenever
is a short exact sequence in P then
is a short exact sequence in Q. (The maps are often omitted and implied, and one says: "if 0→A→B→C→0 is exact, then 0→F(A)→F(B)→F(C)→0 is also exact".)
Further, we say that F is
left-exact if whenever 0→A→B→C→0 is exact then 0→F(A)→F(B)→F(C) is exact;
right-exact if whenever 0→A→B→C→0 is exact then F(A)→F(B)→F(C)→0 is exact;
half-exact if whenever 0→A→B→C→0 is exact then F(A)→F(B)→F(C) is exact. This is distinct from the notion of a topological half-exact functor.
If G is a contravariant additive functor from P to Q, we similarly define G to be
exact if whenever 0→A→B→C→0 is exact then 0→G(C)→G(B)→G(A)→0 is exact;
left-exact if whenever 0→A→B→C→0 is exact then 0→G(C)→G(B)→G(A) is exact;
right-exact if whenever 0→A→B→C→0 is exact then G(C)→G(B)→G(A)→0 is exact;
half-exact if whenever 0→A→B→C→0 is exact then G(C)→G(B)→G(A) is exact.
It is not always necessary to start with an entire short exact sequence 0→A→B→C→0 to have some exactness preserved. The following definitions are equivalent to the ones given above:
F is exact if and only if A→B→C exact implies F(A)→F(B)→F(C) exact;
F is left-exact if and only if 0→A→B→C exact implies 0→F(A)→F(B)→F(C) exact (i.e. if "F turns kernels into kernels");
F is right-exact if and only if A→B→C→0 exact implies F(A)→F(B)→F(C)→0 exact (i.e. if "F turns cokernels into cokernels");
G is left-exact if and only if A→B→C→0 exact implies 0→G(C)→G(B)→G(A) exact (i.e.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, la catégorie des modules sur un monoïde R est une construction qui rend compte abstraitement des propriétés observées dans l'étude des modules sur un anneau, en les généralisant. L'étude de catégories de modules apparaît naturellement en théorie des représentations et en géométrie algébrique. Puisqu'un R-module est un espace vectoriel lorsque R est un corps commutatif, on peut dans un tel cas identifier la catégorie des modules sur R à la sur le corps R.
Le théorème de plongement de Mitchell, aussi connu sous le nom du théorème de Freyd-Mitchell, est un énoncé important portant sur les catégories abéliennes ; il énonce que ces catégories, bien que définies abstraitement, sont en fait des catégories concrètes de modules. Ceci permet alors de partir à la chasse au diagramme dans de telles catégories. Ce théorème est attribué aux mathématiciens Barry Mitchell et Peter Freyd.
En mathématiques, la catégorie des groupes abéliens est une construction qui rend compte abstraitement des propriétés observées en algèbre dans l'étude des groupes abéliens. La catégorie des groupes abéliens est la catégorie Ab définie ainsi : Les objets sont les groupes abéliens ; Les morphismes entre objets sont les morphismes de groupes. C'est donc une sous-catégorie pleine de la catégorie Grp des groupes. La catégorie des groupes abéliens s'identifie à la catégorie des modules sur : La catégorie Ab est monoïdale, et permet donc de définir une structure enrichie.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
Les systèmes non linéaires sont analysés en vue d'établir des lois de commande. On présente la stabilité au sens de Lyapunov, ainsi que des méthodes de commande géométrique (linéarisation exacte). Div
Explore les techniques de linéarisation exactes pour transformer les systèmes non linéaires en systèmes linéaires, en mettant l'accent sur la stabilité du système.
We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...
In diverse fields such as medical imaging, astrophysics, geophysics, or material study, a common challenge exists: reconstructing the internal volume of an object using only physical measurements taken from its exterior or surface. This scientific approach ...
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...