The Éléments de géométrie algébrique ("Elements of Algebraic Geometry") by Alexander Grothendieck (assisted by Jean Dieudonné), or EGA for short, is a rigorous treatise, in French, on algebraic geometry that was published (in eight parts or fascicles) from 1960 through 1967 by the Institut des Hautes Études Scientifiques. In it, Grothendieck established systematic foundations of algebraic geometry, building upon the concept of schemes, which he defined. The work is now considered the foundation stone and basic reference of modern algebraic geometry.
Initially thirteen chapters were planned, but only the first four (making a total of approximately 1500 pages) were published. Much of the material which would have been found in the following chapters can be found, in a less polished form, in the Séminaire de géométrie algébrique (known as SGA). Indeed, as explained by Grothendieck in the preface of the published version of SGA, by 1970 it had become clear that incorporating all of the planned material in EGA would require significant changes in the earlier chapters already published, and that therefore the prospects of completing EGA in the near term were limited. An obvious example is provided by , which became an indispensable tool in the later SGA volumes, but was not yet used in EGA III as the theory was not yet developed at the time. Considerable effort was therefore spent to bring the published SGA volumes to a high degree of completeness and rigour. Before work on the treatise was abandoned, there were plans in 1966–67 to expand the group of authors to include Grothendieck's students Pierre Deligne and Michel Raynaud, as evidenced by published correspondence between Grothendieck and David Mumford. Grothendieck's letter of 4 November 1966 to Mumford also indicates that the second-edition revised structure was in place by that time, with Chapter VIII already intended to cover the Picard scheme.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the derived category D(A) of an A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology.
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne).
Alexander Grothendieck (ˈgroʊtəndiːk; ˌalɛˈksandɐ ˈɡʁoːtn̩ˌdiːk; ɡʁɔtɛndik; 28 March 1928 – 13 November 2014) was a French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and to its foundations, while his so-called "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century.
The course is about defining perfectoid spaces, and possibly presenting some applications.
This course will serve as a first introduction to the geometry of Riemannian manifolds, which form an indispensible tool in the modern fields of differential geometry, analysis and theoretical physics
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
In this thesis we explore the applications of projective geometry, a mathematical theory of the relation between 3D scenes and their 2D images, in modern learning-based computer vision systems. This is an interesting research question which contradicts the ...
Prenant place dans un espace interstitiel situé entre deux niveaux de la ville de Lausanne, le projet étudie le thème de la frugalité autant sous l'angle programmatique que constructif. La nécessité de réduire la consommation de ressources est perçue ici c ...
2016
La norme présente un aperçu des concepts fondamentaux de repérage dans le système d’information de la route. Elle fournit des descriptions sommaires des concepts utilisés et elle montre les relations entre ces concepts. La norme décrit les concepts dans le ...
VSS-Recherche et normalisation en matière de route et de transports2017