The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria. Although glucose is the preferred carbon source for most bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of beta-galactosidase. Gene regulation of the lac operon was the first genetic regulatory mechanism to be understood clearly, so it has become a foremost example of prokaryotic gene regulation. It is often discussed in introductory molecular and cellular biology classes for this reason. This lactose metabolism system was used by François Jacob and Jacques Monod to determine how a biological cell knows which enzyme to synthesize. Their work on the lac operon won them the Nobel Prize in Physiology in 1965.
Bacterial operons are polycistronic transcripts that are able to produce multiple proteins from one mRNA transcript. In this case, when lactose is required as a sugar source for the bacterium, the three genes of the lac operon can be expressed and their subsequent proteins translated: lacZ, lacY, and lacA. The gene product of lacZ is β-galactosidase which cleaves lactose, a disaccharide, into glucose and galactose. lacY encodes Beta-galactoside permease, a membrane protein which becomes embedded in the cytoplasmic membrane to enable the cellular transport of lactose into the cell. Finally, lacA encodes β-galactoside transacetylase.
It would be wasteful to produce enzymes when no lactose is available or if a preferable energy source such as glucose were available. The lac operon uses a two-part control mechanism to ensure that the cell expends energy producing the enzymes encoded by the lac operon only when necessary. In the absence of lactose, the lac repressor, lacI, halts production of the enzymes encoded by the lac operon. The lac repressor is always expressed, unless a co-inducer binds to it. In other words, it is transcribed only in the presence of small co-inducer molecules.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This advanced Bachelor/Master level course will cover fundamentals and approaches at the interface of biology, chemistry, engineering and computer science for diverse fields of synthetic biology. This
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
Life is non-linear. This course introduces dynamical systems as a technique for modelling simple biological processes. The emphasis is on the qualitative and numerical analysis of non-linear dynamical
Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental stimuli, or adapt to new food sources. Virtually any step of gene expression can be modulated, from transcriptional initiation, to RNA processing, and to the post-translational modification of a protein.
β-Galactosidase (EC 3.2.1.23, lactase, beta-gal or β-gal; systematic name β-D-galactoside galactohydrolase), is a glycoside hydrolase enzyme that catalyzes hydrolysis of terminal non-reducing β-D-galactose residues in β-D-galactosides. β-Galactosides include carbohydrates containing galactose where the glycosidic bond lies above the galactose molecule. Substrates of different β-galactosidases include ganglioside GM1, lactosylceramides, lactose, and various glycoproteins.
In biology, the word gene (from γένος, génos; meaning generation or birth or gender) can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function.
Gene regulatory networks (GRNs) play a crucial role in an organism's response to changing environmental conditions. Cellular behaviors typically result from the integration of multiple gene outputs, and their regulation often demands precise control of num ...
Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading microbes. These short immune effectors are conserved in plants, animals, and fungi. Early work showed that AMPs killed bacteria in generalist fashions in vitro: i.e. AMPs that ...
The parDE family of toxin-antitoxin (TA) operons is ubiquitous in bacterial genomes and, in Vibrio cholerae, is an essential component to maintain the presence of chromosome II. Here, we show that transcription of the V. cholerae parDE2 (VcparDE) operon is ...