In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have s, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.
A group scheme is a group object in a that has fiber products and some final object S. That is, it is an S-scheme G equipped with one of the equivalent sets of data
a triple of morphisms μ: G ×S G → G, e: S → G, and ι: G → G, satisfying the usual compatibilities of groups (namely associativity of μ, identity, and inverse axioms)
a functor from schemes over S to the , such that composition with the forgetful functor to sets is equivalent to the presheaf corresponding to G under the Yoneda embedding. (See also: group functor.)
A homomorphism of group schemes is a map of schemes that respects multiplication. This can be precisely phrased either by saying that a map f satisfies the equation fμ = μ(f × f), or by saying that f is a natural transformation of functors from schemes to groups (rather than just sets).
A left action of a group scheme G on a scheme X is a morphism G ×S X→ X that induces a left action of the group G(T) on the set X(T) for any S-scheme T. Right actions are defined similarly.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).
In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by , , or , is a type of commutative affine algebraic group commonly found in projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups . These groups were named by analogy with the theory of tori in Lie group theory (see Cartan subgroup). For example, over the complex numbers the algebraic torus is isomorphic to the group scheme , which is the scheme theoretic analogue of the Lie group .
In , a branch of mathematics, group objects are certain generalizations of groups that are built on more complicated structures than sets. A typical example of a group object is a topological group, a group whose underlying set is a topological space such that the group operations are continuous. Formally, we start with a C with finite products (i.e. C has a terminal object 1 and any two of C have a ).
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
We will study classical and modern deformation theory of schemes and coherent sheaves. Participants should have a solid background in scheme-theory, for example being familiar with the first 3 chapter
Develop your promising idea into a successful business concept proposal, and launch it! Gain practical experience in the key steps of the venture creation process, including marketing and fundraising.
Develop your promising idea into a successful business concept proposal, and launch it! Gain practical experience in the key steps of the venture creation process, including marketing and fundraising.
The Supersingular Isogeny Diffie-Hellman (SIDH) protocol has been the main and most efficient isogeny-based encryption protocol, until a series of breakthroughs led to a polynomial-time key-recovery attack. While some countermeasures have been proposed, th ...
This paper presents a first implementation of gradient, divergence, and particle tracing schemes for the EMC3 code, a stochastic 3D plasma fluid code widely employed for edge plasma and impurity transport modeling in tokamaks and stellarators. These scheme ...
First-principles calculations of phonons are often based on the adiabatic approximation and on Brillouinzone samplings that might not always be sufficient to capture the subtleties of Kohn anomalies. These shortcomings can be addressed through corrections ...