In , a branch of mathematics, group objects are certain generalizations of groups that are built on more complicated structures than sets. A typical example of a group object is a topological group, a group whose underlying set is a topological space such that the group operations are continuous. Formally, we start with a C with finite products (i.e. C has a terminal object 1 and any two of C have a ). A group object in C is an object G of C together with morphisms m : G × G → G (thought of as the "group multiplication") e : 1 → G (thought of as the "inclusion of the identity element") inv : G → G (thought of as the "inversion operation") such that the following properties (modeled on the group axioms – more precisely, on the definition of a group used in universal algebra) are satisfied m is associative, i.e. m (m × idG) = m (idG × m) as morphisms G × G × G → G, and where e.g. m × idG : G × G × G → G × G; here we identify G × (G × G) in a canonical manner with (G × G) × G. e is a two-sided unit of m, i.e. m (idG × e) = p1, where p1 : G × 1 → G is the canonical projection, and m (e × idG) = p2, where p2 : 1 × G → G is the canonical projection inv is a two-sided inverse for m, i.e. if d : G → G × G is the diagonal map, and eG : G → G is the composition of the unique morphism G → 1 (also called the counit) with e, then m (idG × inv) d = eG and m (inv × idG) d = eG. Note that this is stated in terms of maps – product and inverse must be maps in the category – and without any reference to underlying "elements" of the group object – categories in general do not have elements of their objects. Another way to state the above is to say G is a group object in a category C if for every object X in C, there is a group structure on the morphisms Hom(X, G) from X to G such that the association of X to Hom(X, G) is a (contravariant) functor from C to the . Each set G for which a group structure (G, m, u, −1) can be defined can be considered a group object in the category of sets.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.