In , a branch of mathematics, group objects are certain generalizations of groups that are built on more complicated structures than sets. A typical example of a group object is a topological group, a group whose underlying set is a topological space such that the group operations are continuous.
Formally, we start with a C with finite products (i.e. C has a terminal object 1 and any two of C have a ). A group object in C is an object G of C together with morphisms
m : G × G → G (thought of as the "group multiplication")
e : 1 → G (thought of as the "inclusion of the identity element")
inv : G → G (thought of as the "inversion operation")
such that the following properties (modeled on the group axioms – more precisely, on the definition of a group used in universal algebra) are satisfied
m is associative, i.e. m (m × idG) = m (idG × m) as morphisms G × G × G → G, and where e.g. m × idG : G × G × G → G × G; here we identify G × (G × G) in a canonical manner with (G × G) × G.
e is a two-sided unit of m, i.e. m (idG × e) = p1, where p1 : G × 1 → G is the canonical projection, and m (e × idG) = p2, where p2 : 1 × G → G is the canonical projection
inv is a two-sided inverse for m, i.e. if d : G → G × G is the diagonal map, and eG : G → G is the composition of the unique morphism G → 1 (also called the counit) with e, then m (idG × inv) d = eG and m (inv × idG) d = eG.
Note that this is stated in terms of maps – product and inverse must be maps in the category – and without any reference to underlying "elements" of the group object – categories in general do not have elements of their objects.
Another way to state the above is to say G is a group object in a category C if for every object X in C, there is a group structure on the morphisms Hom(X, G) from X to G such that the association of X to Hom(X, G) is a (contravariant) functor from C to the .
Each set G for which a group structure (G, m, u, −1) can be defined can be considered a group object in the category of sets.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .
En mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l'antipode) qui généralise la notion de passage à l'inverse dans un groupe. Ces algèbres ont été introduites à l'origine pour étudier la cohomologie des groupes de Lie. Les algèbres de Hopf interviennent également en topologie algébrique, en théorie des groupes et dans bien d'autres domaines. Enfin, ce qu'on appelle les groupes quantiques sont souvent des algèbres de Hopf « déformées » et qui ne sont en général ni commutatives, ni cocommutatives.
In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance.
We investigate Farley’s CAT(0) cubical model for Thompson’s group F (we adopt the classical language of F, using binary trees and piecewise linear maps, avoiding the one of diagram groups and pictures). Main results include: in general, Thompson’s group el ...
Distributed computing is one of the major trends in the computer industry. As systems become more distributed, they also become more complex and have to deal with new kinds of problems, such as partial crashes and link failures. To answer the growing deman ...
Kan spectra provide a combinatorial model for the stable homotopy category. They were introduced by Dan Kan in 1963 under the name semisimplicial spectra. A Kan spectrum is similar to a pointed simplicial set, but it has simplices in negative degrees as we ...