Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications in lithium ion batteries, thermoelectrics and sensors. Initial synthesis of SiNWs is often accompanied by thermal oxidation steps to yield structures of accurately tailored size and morphology.
SiNWs have unique properties that are not seen in bulk (three-dimensional) silicon materials. These properties arise from an unusual quasi one-dimensional electronic structure and are the subject of research across numerous disciplines and applications. The reason that SiNWs are considered one of the most important one-dimensional materials is they could have a function as building blocks for nanoscale electronics assembled without the need for complex and costly fabrication facilities. SiNWs are frequently studied towards applications including photovoltaics, nanowire batteries, thermoelectrics and non-volatile memory.
Owing to their unique physical and chemical properties, silicon nanowires are a promising candidate for a wide range of applications that draw on their unique physico-chemical characteristics, which differ from those of bulk silicon material.
SiNWs exhibit charge trapping behavior which renders such systems of value in applications necessitating electron hole separation such as photovoltaics, and photocatalysts. Recent experiment on nanowire solar cells has led to a remarkable improvement of the power conversion efficiency of SiNW solar cells from 17% in the last few years.
Charge trapping behaviour and tuneable surface governed transport properties of SiNWs render this category of nanostructures of interest towards use as metal insulator semiconductors and field effect transistors, with further applications as nanoelectronic storage devices, in flash memory, logic devices as well as chemical and biological sensors.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 metres). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. At these scales, quantum mechanical effects are important—which coined the term "quantum wires". Many different types of nanowires exist, including superconducting (e.g. YBCO), metallic (e.g. Ni, Pt, Au, Ag), semiconducting (e.g.
Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (substrate) is exposed to one or more volatile precursors, which react and/or decompose on the substrate surface to produce the desired deposit. Frequently, volatile by-products are also produced, which are removed by gas flow through the reaction chamber.
The course provides an in depth modeling of emerging field effect transistors in CMOS technologty. Starting from the basis, the course will gardually introduce essential aspects to end up with a rigor
Nanofabrication with focused charged particle beams (SEM, FIB) and their applications such as lithography, gas assisted deposition / etching, and milling are discussed and the limitations of these pro
Understanding the mechanical behavior of silicon nanowiresis essentialfor the implementation of advanced nanoscale devices. Although bendingtests are predominantly used for this purpose, their findings shouldbe properly interpreted through modeling. Variou ...
Nonlinear photoluminescence (N-PL) is a broadband photon emission arising from a nonequilibrium heated electron distribution generated at the surface of metallic nanostructures by ultrafast pulsed laser illumination. N-PL is sensitive to surface morphology ...
Amer Chemical Soc2024
, ,
Atomic layer deposition (ALD) is one of the premier methods to synthesize ultra-thin materials on complex surfaces. The technique allows for precise control of the thickness down to single atomic layers, while at the same time providing uniform coverage ev ...