In the mathematical area of graph theory, a clique (ˈkliːk or ˈklɪk) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph is an induced subgraph of that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph (the clique problem) is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied.
Although the study of complete subgraphs goes back at least to the graph-theoretic reformulation of Ramsey theory by , the term clique comes from , who used complete subgraphs in social networks to model cliques of people; that is, groups of people all of whom know each other. Cliques have many other applications in the sciences and particularly in bioinformatics.
A clique, C, in an undirected graph G = (V, E) is a subset of the vertices, C ⊆ V, such that every two distinct vertices are adjacent. This is equivalent to the condition that the induced subgraph of G induced by C is a complete graph. In some cases, the term clique may also refer to the subgraph directly.
A maximal clique is a clique that cannot be extended by including one more adjacent vertex, that is, a clique which does not exist exclusively within the vertex set of a larger clique. Some authors define cliques in a way that requires them to be maximal, and use other terminology for complete subgraphs that are not maximal.
A maximum clique of a graph, G, is a clique, such that there is no clique with more vertices. Moreover, the clique number ω(G) of a graph G is the number of vertices in a maximum clique in G.
The intersection number of G is the smallest number of cliques that together cover all edges of G.
The clique cover number of a graph G is the smallest number of cliques of G whose union covers the set of vertices V of the graph.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the theory and applications of optimization. We develop tools and concepts of optimization and decision analysis that enable managers in manufacturing, service operations, marke
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
In graph theory, Turán's theorem bounds the number of edges that can be included in an undirected graph that does not have a complete subgraph of a given size. It is one of the central results of extremal graph theory, an area studying the largest or smallest graphs with given properties, and is a special case of the forbidden subgraph problem on the maximum number of edges in a graph that does not have a given subgraph.
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.
In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices. The perfect graphs include many important families of graphs and serve to unify results relating colorings and cliques in those families.
Maximal subgraph mining is increasingly important in various domains, including bioinformatics, genomics, and chemistry, as it helps identify common characteristics among a set of graphs and enables their classification into different categories. Existing ...
Various forms of real-world data, such as social, financial, and biological networks, can berepresented using graphs. An efficient method of analysing this type of data is to extractsubgraph patterns, such as cliques, cycles, and motifs, from graphs. For i ...
Natural microbial populations often have complex spatial structures. This can impact their evolution, in particular the ability of mutants to take over. While mutant fixation probabilities are known to be unaffected by sufficiently symmetric structures, ev ...