Concept

Specialization (pre)order

In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T0 separation axiom, this preorder is even a partial order (called the specialization order). On the other hand, for T1 spaces the order becomes trivial and is of little interest. The specialization order is often considered in applications in computer science, where T0 spaces occur in denotational semantics. The specialization order is also important for identifying suitable topologies on partially ordered sets, as is done in order theory. Consider any topological space X. The specialization preorder ≤ on X relates two points of X when one lies in the closure of the other. However, various authors disagree on which 'direction' the order should go. What is agreed is that if x is contained in cl{y}, (where cl{y} denotes the closure of the singleton set {y}, i.e. the intersection of all closed sets containing {y}), we say that x is a specialization of y and that y is a generalization of x; this is commonly written y ⤳ x. Unfortunately, the property "x is a specialization of y" is alternatively written as "x ≤ y" and as "y ≤ x" by various authors (see, respectively, and ). Both definitions have intuitive justifications: in the case of the former, we have x ≤ y if and only if cl{x} ⊆ cl{y}. However, in the case where our space X is the prime spectrum Spec R of a commutative ring R (which is the motivational situation in applications related to algebraic geometry), then under our second definition of the order, we have y ≤ x if and only if y ⊆ x as prime ideals of the ring R. For the sake of consistency, for the remainder of this article we will take the first definition, that "x is a specialization of y" be written as x ≤ y. We then see, x ≤ y if and only if x is contained in all closed sets that contain y. x ≤ y if and only if y is contained in all open sets that contain x.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
ENV-400: Air pollution and climate change
A survey course describing the origins of air pollution and climate change
Séances de cours associées (4)
Analyse des données sur la pollution atmosphérique
Couvre l'analyse des données sur la pollution atmosphérique, en se concentrant sur les bases de R, en visualisant des séries chronologiques et en créant des résumés des concentrations de polluants.
Aperçu général de l'ingénierie mécanique
Couvre le programme de maîtrise en génie mécanique de l'EPFL, y compris les programmes d'études, les spécialisations, les professeurs et les laboratoires.
Afficher plus
Publications associées (5)

Filter quotients and non-presentable (∞,1)-toposes

Nima Rasekh

We define filter quotients of -categories and prove that filter quotients preserve the structure of an elementary -topos and in particular lift the filter quotient of the underlying elementary topos. We then specialize to the case of filter products of -ca ...
2021

Construction of Polar Codes With Sublinear Complexity

Rüdiger Urbanke, Seyed Hamed Hassani, Marco Mondelli

Consider the problem of constructing a polar code of block length N for a given transmission channel W. Previous approaches require one to compute the reliability of the N synthetic channels and then use only those that are sufficiently reliable. However, ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2019

Prime Power Terms In Elliptic Divisibility Sequences

Valéry Aurélien Mahé

We study a problem on specializations of multiples of rational points on elliptic curves analogous to the Mersenne problem. We solve this problem when descent via isogeny is possible by giving explicit bounds on the indices of prime power terms in elliptic ...
American Mathematical Society2014
Afficher plus
Concepts associés (14)
Topologie de Sierpiński
In mathematics, the Sierpiński space (or the connected two-point set) is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński. The Sierpiński space has important relations to the theory of computation and semantics, because it is the classifying space for open sets in the Scott topology.
Continuité de Scott
En mathématiques pour l'informatique, étant donné deux ensembles partiellement ordonnés P et Q, une fonction f : P → Q entre eux est Scott-continue (du nom du mathématicien Dana Scott) si elle préserve tous les suprema dirigés, c'est-à-dire que pour chaque sous-ensemble orienté D de P avec supremum dans P, son a un supremum dans Q, et ce supremum est l'image du supremum de D, c'est-à-dire , où est la jointure dirigée.
Sober space
In mathematics, a sober space is a topological space X such that every (nonempty) irreducible closed subset of X is the closure of exactly one point of X: that is, every irreducible closed subset has a unique generic point. Sober spaces have a variety of cryptomorphic definitions, which are documented in this section. All except the definition in terms of nets are described in. In each case below, replacing "unique" with "at most one" gives an equivalent formulation of the T0 axiom.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.