Summary
The fluctuation–dissipation theorem (FDT) or fluctuation–dissipation relation (FDR) is a powerful tool in statistical physics for predicting the behavior of systems that obey detailed balance. Given that a system obeys detailed balance, the theorem is a proof that thermodynamic fluctuations in a physical variable predict the response quantified by the admittance or impedance (to be intended in their general sense, not only in electromagnetic terms) of the same physical variable (like voltage, temperature difference, etc.), and vice versa. The fluctuation–dissipation theorem applies both to classical and quantum mechanical systems. The fluctuation–dissipation theorem was proven by Herbert Callen and Theodore Welton in 1951 and expanded by Ryogo Kubo. There are antecedents to the general theorem, including Einstein's explanation of Brownian motion during his annus mirabilis and Harry Nyquist's explanation in 1928 of Johnson noise in electrical resistors. The fluctuation–dissipation theorem says that when there is a process that dissipates energy, turning it into heat (e.g., friction), there is a reverse process related to thermal fluctuations. This is best understood by considering some examples: Drag and Brownian motion If an object is moving through a fluid, it experiences drag (air resistance or fluid resistance). Drag dissipates kinetic energy, turning it into heat. The corresponding fluctuation is Brownian motion. An object in a fluid does not sit still, but rather moves around with a small and rapidly-changing velocity, as molecules in the fluid bump into it. Brownian motion converts heat energy into kinetic energy—the reverse of drag. Resistance and Johnson noise If electric current is running through a wire loop with a resistor in it, the current will rapidly go to zero because of the resistance. Resistance dissipates electrical energy, turning it into heat (Joule heating). The corresponding fluctuation is Johnson noise.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.