In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules. The Krull dimension was introduced to provide an algebraic definition of the dimension of an algebraic variety: the dimension of the affine variety defined by an ideal I in a polynomial ring R is the Krull dimension of R/I. A field k has Krull dimension 0; more generally, k[x1, ..., xn] has Krull dimension n. A principal ideal domain that is not a field has Krull dimension 1. A local ring has Krull dimension 0 if and only if every element of its maximal ideal is nilpotent. There are several other ways that have been used to define the dimension of a ring. Most of them coincide with the Krull dimension for Noetherian rings, but can differ for non-Noetherian rings. We say that a chain of prime ideals of the form has length n. That is, the length is the number of strict inclusions, not the number of primes; these differ by 1. We define the Krull dimension of to be the supremum of the lengths of all chains of prime ideals in . Given a prime ideal in R, we define the of , written , to be the supremum of the lengths of all chains of prime ideals contained in , meaning that . In other words, the height of is the Krull dimension of the localization of R at . A prime ideal has height zero if and only if it is a minimal prime ideal. The Krull dimension of a ring is the supremum of the heights of all maximal ideals, or those of all prime ideals. The height is also sometimes called the codimension, rank, or altitude of a prime ideal. In a Noetherian ring, every prime ideal has finite height. Nonetheless, Nagata gave an example of a Noetherian ring of infinite Krull dimension.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.