Sugar alcohols (also called polyhydric alcohols, polyalcohols, alditols or glycitols) are organic compounds, typically derived from sugars, containing one hydroxyl group (–OH) attached to each carbon atom. They are white, water-soluble solids that can occur naturally or be produced industrially by hydrogenating sugars. Since they contain multiple –OH groups, they are classified as polyols.
Sugar alcohols are used widely in the food industry as thickeners and sweeteners. In commercial foodstuffs, sugar alcohols are commonly used in place of table sugar (sucrose), often in combination with high-intensity artificial sweeteners, in order to offset their low sweetness. Xylitol and sorbitol are popular sugar alcohols in commercial foods.
Sugar alcohols have the general formula HOCH2(CHOH)nCH2OH. In contrast, sugars have two fewer hydrogen atoms, for example HOCH2(CHOH)nCHO or HOCH2(CHOH)n−1C(O)CH2OH. The sugar alcohols differ in chain length. Most have five- or six-carbon chains, because they are derived from pentoses (five-carbon sugars) and hexoses (six-carbon sugars), respectively. They have one –OH group attached to each carbon. They are further differentiated by the relative orientation (stereochemistry) of these –OH groups. Unlike sugars, which tend to exist as rings, sugar alcohols do not—although they can be dehydrated to give cyclic ethers (e.g. sorbitol can be dehydrated to isosorbide).
Mannitol is no longer obtained from natural sources; currently, sorbitol and mannitol are obtained by hydrogenation of sugars, using Raney nickel catalysts. The conversion of glucose and mannose to sorbitol and mannitol is given as:
HOCH2CH(OH)CH(OH)CH(OH)CH(OH)CHO + H2 → HOCH2CH(OH)CH(OH)CH(OH)CH(OH)CHHOH
Erythritol is obtained by the fermentation of glucose and sucrose.
Sugar alcohols do not contribute to tooth decay; in fact, xylitol deters tooth decay.
Sugar alcohols are absorbed at 50% of the rate of sugars, resulting in less of an effect on blood sugar levels as measured by comparing their effect to sucrose using the glycemic index.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In organic chemistry, a polyol is an organic compound containing multiple hydroxyl groups (). The term "polyol" can have slightly different meanings depending on whether it is used in food science or polymer chemistry. Polyols containing two, three and four hydroxyl groups are diols, triols, and tetrols, respectively. Polyols may be classified according to their chemistry. Some of these chemistries are polyether, polyester, polycarbonate and also acrylic polyols.
Sweetness is a basic taste most commonly perceived when eating foods rich in sugars. Sweet tastes are generally regarded as pleasurable. In addition to sugars like sucrose, many other chemical compounds are sweet, including aldehydes, ketones, and sugar alcohols. Some are sweet at very low concentrations, allowing their use as non-caloric sugar substitutes. Such non-sugar sweeteners include saccharin and aspartame. Other compounds, such as miraculin, may alter perception of sweetness itself.
Food energy is chemical energy that animals (including humans) derive from their food to sustain their metabolism, including their muscular activity. Most animals derive most of their energy from aerobic respiration, namely combining the carbohydrates, fats, and proteins with oxygen from air or dissolved in water. Other smaller components of the diet, such as organic acids, polyols, and ethanol (drinking alcohol) may contribute to the energy input.
Explores the microbial transformations and health benefits of fermented foods, emphasizing their potential as delivery vehicles for probiotics to underserved communities.
The course will deliver basic knowledge on the principles of food fermentation and enzyme technology. The course will also present benefits that food biotechnology can bring in terms of Nutrition & He
Présentation des propriétés, de la fonctionnalité et des réactions spécifiques des constituants principaux des denrées alimentaires : eau, lipides, hydrates de carbone, protéines, vitamines, sels miné
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
Organic solvents are ubiquitous in industrial and domestic applications from the production of pharmaceuticals to household consumer products. The negative impact of most traditional solvents, especially aprotic types, on the environment, health, and safet ...
EPFL2024
DNA mechanics plays a crucial role in many biological processes, including nucleosome positioning and protein-DNA interactions. It is believed that nature employs epigenetic modifications in DNA to further regulate gene expression. Moreover, double-strande ...
Cellulose nanocrystals (CNCs) are considered a prospective packaging material to partially replace petroleumbased plastics attributed to their renewability, sustainability, biodegradability, and desirable attributes including transparency, oxygen, and oil ...