Summary
Sugar alcohols (also called polyhydric alcohols, polyalcohols, alditols or glycitols) are organic compounds, typically derived from sugars, containing one hydroxyl group (–OH) attached to each carbon atom. They are white, water-soluble solids that can occur naturally or be produced industrially by hydrogenating sugars. Since they contain multiple –OH groups, they are classified as polyols. Sugar alcohols are used widely in the food industry as thickeners and sweeteners. In commercial foodstuffs, sugar alcohols are commonly used in place of table sugar (sucrose), often in combination with high-intensity artificial sweeteners, in order to offset their low sweetness. Xylitol and sorbitol are popular sugar alcohols in commercial foods. Sugar alcohols have the general formula HOCH2(CHOH)nCH2OH. In contrast, sugars have two fewer hydrogen atoms, for example HOCH2(CHOH)nCHO or HOCH2(CHOH)n−1C(O)CH2OH. The sugar alcohols differ in chain length. Most have five- or six-carbon chains, because they are derived from pentoses (five-carbon sugars) and hexoses (six-carbon sugars), respectively. They have one –OH group attached to each carbon. They are further differentiated by the relative orientation (stereochemistry) of these –OH groups. Unlike sugars, which tend to exist as rings, sugar alcohols do not—although they can be dehydrated to give cyclic ethers (e.g. sorbitol can be dehydrated to isosorbide). Mannitol is no longer obtained from natural sources; currently, sorbitol and mannitol are obtained by hydrogenation of sugars, using Raney nickel catalysts. The conversion of glucose and mannose to sorbitol and mannitol is given as: HOCH2CH(OH)CH(OH)CH(OH)CH(OH)CHO + H2 → HOCH2CH(OH)CH(OH)CH(OH)CH(OH)CHHOH Erythritol is obtained by the fermentation of glucose and sucrose. Sugar alcohols do not contribute to tooth decay; in fact, xylitol deters tooth decay. Sugar alcohols are absorbed at 50% of the rate of sugars, resulting in less of an effect on blood sugar levels as measured by comparing their effect to sucrose using the glycemic index.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood