Summary
In mathematics, the linear span (also called the linear hull or just span) of a set S of vectors (from a vector space), denoted span(S), is defined as the set of all linear combinations of the vectors in S. For example, two linearly independent vectors span a plane. The linear span can be characterized either as the intersection of all linear subspaces that contain S, or as the smallest subspace containing S. The linear span of a set of vectors is therefore a vector space itself. Spans can be generalized to matroids and modules. To express that a vector space V is a linear span of a subset S, one commonly uses the following phrases—either: S spans V, S is a spanning set of V, V is spanned/generated by S, or S is a generator or generator set of V. Given a vector space V over a field K, the span of a set S of vectors (not necessarily finite) is defined to be the intersection W of all subspaces of V that contain S. W is referred to as the subspace spanned by S, or by the vectors in S. Conversely, S is called a spanning set of W, and we say that S spans W. Alternatively, the span of S may be defined as the set of all finite linear combinations of elements (vectors) of S, which follows from the above definition. In the case of infinite S, infinite linear combinations (i.e. where a combination may involve an infinite sum, assuming that such sums are defined somehow as in, say, a Banach space) are excluded by the definition; a generalization that allows these is not equivalent. The real vector space has {(−1, 0, 0), (0, 1, 0), (0, 0, 1)} as a spanning set. This particular spanning set is also a basis. If (−1, 0, 0) were replaced by (1, 0, 0), it would also form the canonical basis of . Another spanning set for the same space is given by {(1, 2, 3), (0, 1, 2), (−1, , 3), (1, 1, 1)}, but this set is not a basis, because it is linearly dependent. The set {(1, 0, 0), (0, 1, 0), (1, 1, 0)} is not a spanning set of , since its span is the space of all vectors in whose last component is zero.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (38)
MATH-106(e): Analysis II
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
MATH-305: Introduction to partial differential equations
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Show more