Abraham de Moivre FRS (abʁaam də mwavʁ; 26 May 1667 - 27 November 1754) was a French mathematician known for de Moivre's formula, a formula that links complex numbers and trigonometry, and for his work on the normal distribution and probability theory.
He moved to England at a young age due to the religious persecution of Huguenots in France which reached a climax in 1685 with the Edict of Fontainebleau.
He was a friend of Isaac Newton, Edmond Halley, and James Stirling. Among his fellow Huguenot exiles in England, he was a colleague of the editor and translator Pierre des Maizeaux.
De Moivre wrote a book on probability theory, The Doctrine of Chances, said to have been prized by gamblers. De Moivre first discovered Binet's formula, the closed-form expression for Fibonacci numbers linking the nth power of the golden ratio φ to the nth Fibonacci number. He also was the first to postulate the central limit theorem, a cornerstone of probability theory.
Abraham de Moivre was born in Vitry-le-François in Champagne on 26 May 1667. His father, Daniel de Moivre, was a surgeon who believed in the value of education. Though Abraham de Moivre's parents were Protestant, he first attended Christian Brothers' Catholic school in Vitry, which was unusually tolerant given religious tensions in France at the time. When he was eleven, his parents sent him to the Protestant Academy at Sedan, where he spent four years studying Greek under Jacques du Rondel. The Protestant Academy of Sedan had been founded in 1579 at the initiative of Françoise de Bourbon, the widow of Henri-Robert de la Marck.
In 1682 the Protestant Academy at Sedan was suppressed, and de Moivre enrolled to study logic at Saumur for two years. Although mathematics was not part of his course work, de Moivre read several works on mathematics on his own, including Éléments des mathématiques by the French Oratorian priest and mathematician Jean Prestet and a short treatise on games of chance, De Ratiociniis in Ludo Aleae, by Christiaan Huygens the Dutch physicist, mathematician, astronomer and inventor.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem.
The Doctrine of Chances was the first textbook on probability theory, written by 18th-century French mathematician Abraham de Moivre and first published in 1718. De Moivre wrote in English because he resided in England at the time, having fled France to escape the persecution of Huguenots. The book's title came to be synonymous with probability theory, and accordingly the phrase was used in Thomas Bayes' famous posthumous paper An Essay towards solving a Problem in the Doctrine of Chances, wherein a version of Bayes' theorem was first introduced.
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers.
Quel est le rôle de la sobriété dans la société, dans la transition énergétique, dans la politique climatique ? Quel lien avec le bien-être ? Comment la définir, analyser, mesurer ? Exemple, ateliers, et un nouveau cadre d'analyse seront présentés. ...
Il s’agit de concevoir une table dont toute la surface serait source d’énergie, il suffirait de poser un périphérique capable de capter cette énergie sur la table pour l’alimenter. A l’aide de l’induction magnétique, il est possible de réaliser un tel disp ...
Ce projet a donc pour but, en s’inspirant de ce qui a déjà été fait dans ce domaine, et en utilisant un prototype réalisé par Markus Flückiger, de réaliser et monter un système électronique qui transformera l’énergie produite par les piézoélectriques en én ...