In algebraic topology, a homology sphere is an n-manifold X having the homology groups of an n-sphere, for some integer . That is,
and
for all other i.
Therefore X is a connected space, with one non-zero higher Betti number, namely, . It does not follow that X is simply connected, only that its fundamental group is perfect (see Hurewicz theorem).
A rational homology sphere is defined similarly but using homology with rational coefficients.
The Poincaré homology sphere (also known as Poincaré dodecahedral space) is a particular example of a homology sphere, first constructed by Henri Poincaré. Being a spherical 3-manifold, it is the only homology 3-sphere (besides the 3-sphere itself) with a finite fundamental group. Its fundamental group is known as the binary icosahedral group and has order 120. Since the fundamental group of the 3-sphere is trivial, this shows that there exist 3-manifolds with the same homology groups as the 3-sphere that are not homeomorphic to it.
A simple construction of this space begins with a dodecahedron. Each face of the dodecahedron is identified with its opposite face, using the minimal clockwise twist to line up the faces. Gluing each pair of opposite faces together using this identification yields a closed 3-manifold. (See Seifert–Weber space for a similar construction, using more "twist", that results in a hyperbolic 3-manifold.)
Alternatively, the Poincaré homology sphere can be constructed as the quotient space SO(3)/I where I is the icosahedral group (i.e., the rotational symmetry group of the regular icosahedron and dodecahedron, isomorphic to the alternating group A5). More intuitively, this means that the Poincaré homology sphere is the space of all geometrically distinguishable positions of an icosahedron (with fixed center and diameter) in Euclidean 3-space. One can also pass instead to the universal cover of SO(3) which can be realized as the group of unit quaternions and is homeomorphic to the 3-sphere.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below. A topological space is a 3-manifold if it is a second-countable Hausdorff space and if every point in has a neighbourhood that is homeomorphic to Euclidean 3-space.
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
In mathematics, the binary icosahedral group 2I or is a certain nonabelian group of order 120. It is an extension of the icosahedral group I or (2,3,5) of order 60 by the cyclic group of order 2, and is the of the icosahedral group under the 2:1 covering homomorphism of the special orthogonal group by the spin group. It follows that the binary icosahedral group is a discrete subgroup of Spin(3) of order 120. It should not be confused with the full icosahedral group, which is a different group of order 120, and is rather a subgroup of the orthogonal group O(3).
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
This thesis is a study of the global well-posedness of the Cauchy problems for half-wave maps from the Minkowski space of dimension n+1 to the 2-dimensional sphere and the hyperbolic plane. The work is mainly based on the results from Krieger-Sire 17' in ...
The connectedness percolation threshold (phi(c)) for spherically symmetric, randomly distributed fractal aggregates is investigated as a function of the fractal dimension (d(F)) of the aggregates through a mean-field approach. A pair of aggregates (each of ...
State-of-the-art 2D image compression schemes rely on the power of convolutional neural networks (CNNs). Although CNNs offer promising perspectives for 2D image compression, extending such models to omnidirectional images is not straightforward. First, omn ...