In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the notion. The most familiar examples of this construction occur when considering vector spaces (modules over a field) and abelian groups (modules over the ring Z of integers). The construction may also be extended to cover Banach spaces and Hilbert spaces. See the article decomposition of a module for a way to write a module as a direct sum of submodules. We give the construction first in these two cases, under the assumption that we have only two objects. Then we generalize to an arbitrary family of arbitrary modules. The key elements of the general construction are more clearly identified by considering these two cases in depth. Suppose V and W are vector spaces over the field K. The cartesian product V × W can be given the structure of a vector space over K by defining the operations componentwise: (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) α (v, w) = (α v, α w) for v, v1, v2 ∈ V, w, w1, w2 ∈ W, and α ∈ K. The resulting vector space is called the direct sum of V and W and is usually denoted by a plus symbol inside a circle: It is customary to write the elements of an ordered sum not as ordered pairs (v, w), but as a sum v + w. The subspace V × {0} of V ⊕ W is isomorphic to V and is often identified with V; similarly for {0} × W and W. (See internal direct sum below.) With this identification, every element of V ⊕ W can be written in one and only one way as the sum of an element of V and an element of W. The dimension of V ⊕ W is equal to the sum of the dimensions of V and W. One elementary use is the reconstruction of a finite vector space from any subspace W and its orthogonal complement: This construction readily generalizes to any finite number of vector spaces.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (26)
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Show more
Related lectures (83)
Algebraic Kunneth Theorem
Covers the Algebraic Kunneth Theorem, explaining chain complexes and cohomology computations.
Group Algebra: Maschke's Theorem
Explores Wedderburn's theorem, group algebras, and Maschke's theorem in the context of finite dimensional simple algebras and their endomorphisms.
Weyl character formula
Explores the proof of the Weyl character formula for finite-dimensional representations of semisimple Lie algebras.
Show more
Related publications (56)
Related concepts (20)
Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication.
Algebra over a field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras.
Abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning.
Show more
Related MOOCs (9)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.