In group theory,
the Tits group 2F4(2)′, named for Jacques Tits (tits), is a finite simple group of order
211 · 33 · 52 · 13 = 17,971,200.
It is sometimes considered a 27th sporadic group.
The Ree groups 2F4(22n+1) were constructed by , who showed that they are simple if n ≥ 1. The first member of this series 2F4(2) is not simple. It was studied by who showed that it is almost simple, its derived subgroup 2F4(2)′ of index 2 being a new simple group, now called the Tits group. The group 2F4(2) is a group of Lie type and has a BN pair, but the Tits group itself does not have a BN pair. The Tits group is member of the infinite family 2F4(22n+1)′ of commutator groups of the Ree groups, and thus by definition not sporadic. But because it is also not strictly a group of Lie type, it is sometimes regarded as a 27th sporadic group.
The Schur multiplier of the Tits group is trivial and its outer automorphism group has order 2, with the full automorphism group being the group 2F4(2).
The Tits group occurs as a maximal subgroup of the Fischer group Fi22. The groups 2F4(2) also occurs as a maximal subgroup of the Rudvalis group, as the point stabilizer of the rank-3 permutation action on 4060 = 1 + 1755 + 2304 points.
The Tits group is one of the simple N-groups, and was overlooked in John G. Thompson's first announcement of the classification of simple N-groups, as it had not been discovered at the time. It is also one of the thin finite groups.
The Tits group was characterized in various ways by and .
and independently found the 8 classes of maximal subgroups of the Tits group as follows:
L3(3):2 Two classes, fused by an outer automorphism. These subgroups fix points of rank 4 permutation representations.
2.[28].5.4 Centralizer of an involution.
L2(25)
22.[28].S3
A6.22 (Two classes, fused by an outer automorphism)
52:4A4
The Tits group can be defined in terms of generators and relations by
where [a, b] is the commutator a−1b−1ab. It has an outer automorphism obtained by sending (a, b) to (a, b(ba)5b(ba)5).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.
In mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of Inn(G) with respect to outer automorphisms are then the elements of Out(G); this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups.
In mathematics, the classification of finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six or twenty-seven exceptions, called sporadic. The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004.
In the first chapter, we characterize p-adic linear algebraic groups with the Haagerup Property. We also characterize connected Lie groups having the Haagerup Property viewed as discrete groups, and we provide an example of a finitely presented group not h ...