En mathématiques, le groupe de Tits est un groupe simple fini d'ordre = 211 · 33 · 52 · 13 nommé en l'honneur du mathématicien Jacques Tits. C'est le sous-groupe dérivé du groupe Ree . À strictement parler, le groupe de Tits lui-même n'est pas un groupe de type de Lie et en fait, il a été quelquefois considéré comme un groupe sporadique. Le groupe de Tits peut être défini en termes de générateurs et de relations par où est le commutateur. Son multiplicateur de Schur est trivial. Son groupe d'automorphismes est et son groupe d'automorphismes extérieurs est d'ordre 2, engendré par l'automorphisme qui envoie (a, b) sur (a, bbabababababbababababa).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
PHYS-441: Statistical physics of biomacromolecules
Introduction to the application of the notions and methods of theoretical physics to problems in biology.
Séances de cours associées (5)
Géométrie prévisionnelle: Fondements et applications
Explore les fondamentaux de la géométrie projective et ses applications pratiques dans la résolution des problèmes géométriques.
Monster Group : Représentation
Explore le groupe Monster, un groupe simple sporadique avec une théorie de représentation unique.
Corrélations à long terme dans la science des polymères
Explore l'importance des corrélations à longue portée dans les modèles et les approximations de la science des polymères.
Afficher plus
Publications associées (1)

On Haagerup and Kazhdan properties

In the first chapter, we characterize p-adic linear algebraic groups with the Haagerup Property. We also characterize connected Lie groups having the Haagerup Property viewed as discrete groups, and we provide an example of a finitely presented group not h ...
EPFL2006
Concepts associés (6)
Groupe de type de Lie
En mathématiques, un groupe de type de Lie G(k) est un groupe (non nécessairement fini) de points rationnels d'un groupe algébrique linéaire réductif G à valeur dans le corps commutatif k. La classification des groupes simples finis montre que les groupes de types de Lie finis forment l'essentiel des groupes finis simples. Des cas particuliers incluent les groupes classiques, les groupes de Chevalley, les groupes de Steinberg et les groupes de Suzuki-Ree.
Outer automorphism group
In mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of Inn(G) with respect to outer automorphisms are then the elements of Out(G); this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups.
Classification des groupes simples finis
En mathématiques, et plus précisément en théorie des groupes, la classification des groupes simples finis, aussi appelée le théorème énorme, est un ensemble de travaux, principalement publiés entre environ 1955 et 1983, qui a pour but de classer tous les groupes finis simples. En tout, cet ensemble comprend des dizaines de milliers de pages publiées dans 500 articles par plus de 100 auteurs.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.