Spike-timing-dependent plasticity (STDP) is a biological process that adjusts the strength of connections between neurons in the brain. The process adjusts the connection strengths based on the relative timing of a particular neuron's output and input action potentials (or spikes). The STDP process partially explains the activity-dependent development of nervous systems, especially with regard to long-term potentiation and long-term depression.
Under the STDP process, if an input spike to a neuron tends, on average, to occur immediately before that neuron's output spike, then that particular input is made somewhat stronger. If an input spike tends, on average, to occur immediately after an output spike, then that particular input is made somewhat weaker hence: "spike-timing-dependent plasticity". Thus, inputs that might be the cause of the post-synaptic neuron's excitation are made even more likely to contribute in the future, whereas inputs that are not the cause of the post-synaptic spike are made less likely to contribute in the future. The process continues until a subset of the initial set of connections remain, while the influence of all others is reduced to 0. Since a neuron produces an output spike when many of its inputs occur within a brief period, the subset of inputs that remain are those that tended to be correlated in time. In addition, since the inputs that occur before the output are strengthened, the inputs that provide the earliest indication of correlation will eventually become the final input to the neuron.
In 1973, M. M. Taylor suggested that if synapses were strengthened for which a presynaptic spike occurred just before a postsynaptic spike more often than the reverse (Hebbian learning), while with the opposite timing or in the absence of a closely timed presynaptic spike, synapses were weakened (anti-Hebbian learning), the result would be an informationally efficient recoding of input patterns. This proposal apparently passed unnoticed in the neuroscientific community, and subsequent experimentation was conceived independently of these early suggestions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A neural circuit (also known as a biological neural network BNNs) is a population of neurons interconnected by synapses to carry out a specific function when activated. Multiple neural circuits interconnect with one another to form large scale brain networks. Neural circuits have inspired the design of artificial neural networks, though there are significant differences. Early treatments of neural networks can be found in Herbert Spencer's Principles of Psychology, 3rd edition (1872), Theodor Meynert's Psychiatry (1884), William James' Principles of Psychology (1890), and Sigmund Freud's Project for a Scientific Psychology (composed 1895).
Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered, it would be impossible for language, relationships, or personal identity to develop. Memory loss is usually described as forgetfulness or amnesia. Memory is often understood as an informational processing system with explicit and implicit functioning that is made up of a sensory processor, short-term (or working) memory, and long-term memory.
In neurophysiology, long-term depression (LTD) is an activity-dependent reduction in the efficacy of neuronal synapses lasting hours or longer following a long patterned stimulus. LTD occurs in many areas of the CNS with varying mechanisms depending upon brain region and developmental progress. As the opposing process to long-term potentiation (LTP), LTD is one of several processes that serves to selectively weaken specific synapses in order to make constructive use of synaptic strengthening caused by LTP.
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
The course introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies with a focus on the biophysical level.
In this course we study mathematical models of neurons and neuronal networks in the context of biology and establish links to models of cognition. The focus is on brain dynamics approximated by determ
Recent advances in machine learning have contributed to the emergence of powerful models for how humans and other animals reason and behave. In this course we will compare and contrast how such brain
Covers neuromorphic computing, challenges in ternary and binary computing, hardware simulations of the brain, and new materials for artificial brain cells.
Explores different forms of synaptic plasticity and the mechanisms behind them, emphasizing the role of calcium in inducing and maintaining plastic changes.
The lateral amygdala (LA) encodes fear memories by potentiating sensory inputs associated with threats and, in the process, recruits 10-30% of its neurons per fear memory engram. However, how the local network within the LA processes this information and w ...
Nature Portfolio2024
, , , ,
Recent developments in experimental techniques have enabled simultaneous recordings from thousands of neurons, enabling the study of functional cell assemblies. However, determining the patterns of synaptic connectivity giving rise to these assemblies rema ...
2023
In humans and animals, surprise is a physiological reaction to an unexpected event, but how surprise can be linked to plausible models of neuronal activity is an open problem. We propose a self-supervised spiking neural network model where a surprise signa ...