In functional analysis (a branch of mathematics), a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Roughly speaking, this means that if two functions and in the RKHS are close in norm, i.e., is small, then and are also pointwise close, i.e., is small for all . The converse does not need to be true. Informally, this can be shown by looking at the supremum norm: the sequence of functions converges pointwise, but does not converge uniformly i.e. does not converge with respect to the supremum norm. (This is not a counterexample because the supremum norm does not arise from any inner product due to not satisfying the parallelogram law.)
It is not entirely straightforward to construct a Hilbert space of functions which is not an RKHS. Some examples, however, have been found.
L2 spaces are not Hilbert spaces of functions (and hence not RKHSs), but rather Hilbert spaces of equivalence classes of functions (for example, the functions and defined by and are equivalent in L2). However, there are RKHSs in which the norm is an L2-norm, such as the space of band-limited functions (see the example below).
An RKHS is associated with a kernel that reproduces every function in the space in the sense that for every in the set on which the functions are defined, "evaluation at " can be performed by taking an inner product with a function determined by the kernel. Such a reproducing kernel exists if and only if every evaluation functional is continuous.
The reproducing kernel was first introduced in the 1907 work of Stanisław Zaremba concerning boundary value problems for harmonic and biharmonic functions. James Mercer simultaneously examined functions which satisfy the reproducing property in the theory of integral equations. The idea of the reproducing kernel remained untouched for nearly twenty years until it appeared in the dissertations of Gábor Szegő, Stefan Bergman, and Salomon Bochner. The subject was eventually systematically developed in the early 1950s by Nachman Aronszajn and Stefan Bergman.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
This course is an introduction to the spectral theory of linear operators acting in Hilbert spaces. The main goal is the spectral decomposition of unbounded selfadjoint operators. We will also give el
A theoretical and computational framework for signal sampling and approximation is presented from an intuitive geometric point of view. This lecture covers both mathematical and practical aspects of
In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
Local Hamiltonians of fermionic systems on a lattice can be mapped onto local qubit Hamiltonians. Maintaining the lo-cality of the operators comes at the ex-pense of increasing the Hilbert space with auxiliary degrees of freedom. In order to retrieve the l ...
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF2023
This paper is devoted to the study of multigraded algebras and multigraded linear series. For an NsNs-graded algebra AA, we define and study its volume function FA:N+s -> RFA:N+s→R, which computes the ...
This thesis concerns the theory of positive-definite completions and its mutually beneficial connections to the statistics of function-valued or continuously-indexed random processes, better known as functional data analysis. In particular, it dwells upon ...