Concept

Elliptic partial differential equation

Summary
Second-order linear partial differential equations (PDEs) are classified as either elliptic, hyperbolic, or parabolic. Any second-order linear PDE in two variables can be written in the form where A, B, C, D, E, F, and G are functions of x and y and where , and similarly for . A PDE written in this form is elliptic if with this naming convention inspired by the equation for a planar ellipse. The simplest examples of elliptic PDE's are the Laplace equation, , and the Poisson equation, In a sense, any other elliptic PDE in two variables can be considered to be a generalization of one of these equations, as it can always be put into the canonical form through a change of variables. Elliptic equations have no real characteristic curves, curves along which it is not possible to eliminate at least one second derivative of from the conditions of the Cauchy problem. Since characteristic curves are the only curves along which solutions to partial differential equations with smooth parameters can have discontinuous derivatives, solutions to elliptic equations cannot have discontinuous derivatives anywhere. This means elliptic equations are well suited to describe equilibrium states, where any discontinuities have already been smoothed out. For instance, we can obtain Laplace's equation from the heat equation by setting . This means that Laplace's equation describes a steady state of the heat equation. In parabolic and hyperbolic equations, characteristics describe lines along which information about the initial data travels. Since elliptic equations have no real characteristic curves, there is no meaningful sense of information propagation for elliptic equations. This makes elliptic equations better suited to describe static, rather than dynamic, processes. We derive the canonical form for elliptic equations in two variables, . and . If , applying the chain rule once gives and , a second application gives and We can replace our PDE in x and y with an equivalent equation in and where and To transform our PDE into the desired canonical form, we seek and such that and .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (27)
MATH-468: Numerics for fluids, structures & electromagnetics
Cours donné en alternance tous les deux ans
MATH-514: Nonlinear Schrödinger equations
This course is an introduction to nonlinear Schrödinger equations (NLS) and, more generally, to nonlinear dispersive equations. We will discuss local and global well-posedness, conservation laws, the
MATH-305: Introduction to partial differential equations
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
Show more
Related lectures (81)
Regularity of Weak Solutions
Explores elliptic PDEs, weak solutions, regularity, and strong solutions, with a focus on classical solutions and proof techniques.
Maximum Principle in Harmonic Functions
Explores the maximum principle in harmonic functions and its implications for uniqueness and bounds on solutions.
Introduction to Partial Differential Equations
Covers the basics of Partial Differential Equations, focusing on heat transfer modeling and numerical solution methods.
Show more
Related publications (217)

Model reduction of coupled systems based on non-intrusive approximations of the boundary response maps

Jan Sickmann Hesthaven, Niccolo' Discacciati

We propose a local, non -intrusive model order reduction technique to accurately approximate the solution of coupled multi -component parametrized systems governed by partial differential equations. Our approach is based on the approximation of the boundar ...
Lausanne2024

Shape Holomorphy of Boundary Integral Operators on Multiple Open Arcs

Fernando José Henriquez Barraza

We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting th ...
New York2024

Generalization of Scaled Deep ResNets in the Mean-Field Regime

Volkan Cevher, Grigorios Chrysos, Fanghui Liu

Despite the widespread empirical success of ResNet, the generalization properties of deep ResNet are rarely explored beyond the lazy training regime. In this work, we investigate scaled ResNet in the limit of infinitely deep and wide neural networks, of wh ...
2024
Show more
Related concepts (3)
Laplace's equation
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.
Harmonic function
In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function where U is an open subset of \mathbb R^n, that satisfies Laplace's equation, that is, everywhere on U. This is usually written as or The descriptor "harmonic" in the name harmonic function originates from a point on a taut string which is undergoing harmonic motion. The solution to the differential equation for this type of motion can be written in terms of sines and cosines, functions which are thus referred to as harmonics.
Partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similar to how x is thought of as an unknown number to be solved for in an algebraic equation like x2 − 3x + 2 = 0. However, it is usually impossible to write down explicit formulas for solutions of partial differential equations.