Summary
Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often labelled ) conditional on observed values of the regressors (usually ). The simplest and most widely used version of this model is the normal linear model, in which given is distributed Gaussian. In this model, and under a particular choice of prior probabilities for the parameters—so-called conjugate priors—the posterior can be found analytically. With more arbitrarily chosen priors, the posteriors generally have to be approximated. Consider a standard linear regression problem, in which for we specify the mean of the conditional distribution of given a predictor vector : where is a vector, and the are independent and identically normally distributed random variables: This corresponds to the following likelihood function: The ordinary least squares solution is used to estimate the coefficient vector using the Moore–Penrose pseudoinverse: where is the design matrix, each row of which is a predictor vector ; and is the column -vector . This is a frequentist approach, and it assumes that there are enough measurements to say something meaningful about . In the Bayesian approach, the data are supplemented with additional information in the form of a prior probability distribution. The prior belief about the parameters is combined with the data's likelihood function according to Bayes theorem to yield the posterior belief about the parameters and . The prior can take different functional forms depending on the domain and the information that is available a priori. Since the data comprise both and , the focus only on the distribution of conditional on needs justification.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.