Adaptive cruise control (ACC) is a type of advanced driver-assistance system for road vehicles that automatically adjusts the vehicle speed to maintain a safe distance from vehicles ahead. As of 2019, it is also called by 20 unique names that describe that basic functionality. This is also known as Dynamic cruise control.
Control is based on sensor information from on-board sensors. Such systems may use a radar, laser sensor or a camera setup allowing the vehicle to brake when it detects the car is approaching another vehicle ahead, then accelerate when traffic allows it to.
ACC technology is regarded as a key component of future generations of intelligent cars. The technology enhances passenger safety and convenience as well as increasing road capacity by maintaining optimal separation between vehicles and reducing driver errors. Vehicles with autonomous cruise control are considered a Level 1 autonomous car, as defined by SAE International. When combined with another driver assist feature such as lane centering, the vehicle is considered a Level 2 autonomous car.
Adaptive cruise control does not provide full autonomy: the system only provides some help to the driver, but does not drive the car by itself.
1992: Mitsubishi Motors was the first to offer a lidar-based distance detection system on the Japanese market Debonair. Marketed as "distance warning", this system warns the driver, without influencing throttle, brakes, or gearshifting.
1995: Mitsubishi Diamante introduced laser "Preview Distance Control". This system controlled speed through throttle control and downshifting, but could not apply the brakes.
1997: Toyota offered a "laser adaptive cruise control" (lidar) system on the Japanese market Celsior. It controlled speed through throttle control and downshifting, but could not apply the brakes.
1999: Mercedes introduced "Distronic", the first radar-assisted ACC, on the Mercedes-Benz S-Class (W220) and the CL-Class.
1999: Jaguar began offering a radar-based ACC system on the Jaguar XK (X100).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
To cope with constant and unexpected changes in their environment, robots need to adapt their paths rapidly and appropriately without endangering humans. this course presents method to react within mi
In road-transport terminology, a lane departure warning system (LDWS) is a mechanism designed to warn the driver when the vehicle begins to move out of its lane (unless a turn signal is on in that direction) on freeways and arterial roads. These systems are designed to minimize accidents by addressing the main causes of collisions: driver error, distractions and drowsiness. In 2009 the U.S. National Highway Traffic Safety Administration (NHTSA) began studying whether to mandate lane departure warning systems and frontal collision warning systems on automobiles.
A collision avoidance system (CAS), also known as a pre-crash system, forward collision warning system (FCW), or collision mitigation system, is an advanced driver-assistance system designed to prevent or reduce the severity of a collision. In its basic form, a forward collision warning system monitors a vehicle's speed, the speed of the vehicle in front of it, and the distance between the vehicles, so that it can provide a warning to the driver if the vehicles get too close, potentially helping to avoid a crash.
The Lexus LS is a full-size luxury sedan (F-segment in Europe) serving as the flagship model of Lexus, the luxury division of Toyota. For the first four generations, all LS models featured V8 engines and were predominantly rear-wheel-drive. In the fourth generation, Lexus offered all-wheel-drive, hybrid, and long-wheelbase variants. The fifth generation changed to using a V6 engine with no V8 option, and only one length was offered. As the first model developed by Lexus, the LS 400 debuted in January 1989 with the second generation debuting in November 1994.
Robotics and neuroscience are sister disciplines that both aim to understand how agile, efficient, and robust locomotion can be achieved in autonomous agents. Robotics has already benefitted from neuromechanical principles discovered by investigating anima ...
A vehicle's steering is a particular system in that it is exposed to individual subjective reviews based on criteria that are hard to assess quantitatively. Haptic design of such systems is a prime concern that has been at the center of industrial developm ...
EPFL2023
,
Industrial information integration engineering (IIIE) is an interdisciplinary field to facilitate the industrial information integration process. In the age of complex and large-scale systems, model-based systems engineering (MBSE) is widely adopted in ind ...