Summary
A case–control study (also known as case–referent study) is a type of observational study in which two existing groups differing in outcome are identified and compared on the basis of some supposed causal attribute. Case–control studies are often used to identify factors that may contribute to a medical condition by comparing subjects who have that condition/disease (the "cases") with patients who do not have the condition/disease but are otherwise similar (the "controls"). They require fewer resources but provide less evidence for causal inference than a randomized controlled trial. A case–control study is often used to produce an odds ratio, which is an inferior measure of strength of association compared to relative risk, but new statistical methods make it possible to use a case-control study to estimate relative risk, risk differences, and other quantities. The case–control is a type of epidemiological observational study. An observational study is a study in which subjects are not randomized to the exposed or unexposed groups, rather the subjects are observed in order to determine both their exposure and their outcome status and the exposure status is thus not determined by the researcher. Porta's Dictionary of Epidemiology defines the case–control study as: an observational epidemiological study of persons with the disease (or another outcome variable) of interest and a suitable control group of persons without the disease (comparison group, reference group). The potential relationship of a suspected risk factor or an attribute to the disease is examined by comparing the diseased and nondiseased subjects with regard to how frequently the factor or attribute is present (or, if quantitative, the levels of the attribute) in each of the groups (diseased and nondiseased)." For example, in a study trying to show that people who smoke (the attribute) are more likely to be diagnosed with lung cancer (the outcome), the cases would be persons with lung cancer, the controls would be persons without lung cancer (not necessarily healthy), and some of each group would be smokers.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (14)
HUM-450: Digital urban history: Lausanne Time Machine I
Ce cours s'inscrit dans une offre de cours interdisciplinaires et collaboratifs ouverts aux étudiant·e·s de l'UNIL et de l'EPFL. Il s'oriente principalement vers la connaissance de l'histoire de Lausa
BIO-512: Digital epidemiology
Epidemiology is foundational to medicine and public health. This course starts with the key principles of classical epidemiology, progressing through computational modeling techniques, and concluding
HUM-454: Digital urban history: Lausanne Time Machine II
Ce cours s'inscrit dans une nouvelle offre de cours interdisciplinaires et collaboratifs ouverts aux étudiant·e·s de l'UNIL et de l'EPFL. Il s'oriente principalement vers la connaissance de l'histoire
Show more
Related publications (222)
Related concepts (8)
Relative risk
The relative risk (RR) or risk ratio is the ratio of the probability of an outcome in an exposed group to the probability of an outcome in an unexposed group. Together with risk difference and odds ratio, relative risk measures the association between the exposure and the outcome. Relative risk is used in the statistical analysis of the data of ecological, cohort, medical and intervention studies, to estimate the strength of the association between exposures (treatments or risk factors) and outcomes.
Confounding
In causal inference, a confounder (also confounding variable, confounding factor, extraneous determinant or lurking variable) is a variable that influences both the dependent variable and independent variable, causing a spurious association. Confounding is a causal concept, and as such, cannot be described in terms of correlations or associations. The existence of confounders is an important quantitative explanation why correlation does not imply causation.
Cohort study
A cohort study is a particular form of longitudinal study that samples a cohort (a group of people who share a defining characteristic, typically those who experienced a common event in a selected period, such as birth or graduation), performing a cross-section at intervals through time. It is a type of panel study where the individuals in the panel share a common characteristic.
Show more