Small fiber peripheral neuropathy is a type of peripheral neuropathy that occurs from damage to the small unmyelinated and myelinated peripheral nerve fibers. These fibers, categorized as C fibers and small Aδ fibers, are present in skin, peripheral nerves, and organs. The role of these nerves is to innervate the skin (somatic fibers) and help control autonomic function (autonomic fibers). It is estimated that 15–20 million people in the United States have some form of peripheral neuropathy.
Small fiber neuropathy is a condition characterized by severe pain. Symptoms typically begin in the feet or hands but can start in other parts of the body. Some people initially experience a more generalized, whole-body pain. The pain is often described as stabbing or burning, or abnormal skin sensations such as tingling or itchiness. In some individuals, the pain is more severe during times of rest or at night. The signs and symptoms of small fiber neuropathy can occur at any point in life depending on the underlying cause.
Individuals with small fiber neuropathy often cannot feel pain that is concentrated in a very small area, such as the prick of a pin. However, they have an increased sensitivity to pain in general (hyperalgesia) and experience pain from stimulation that typically does not cause pain (allodynia). People affected with this condition may also have a reduced ability to differentiate between hot and cold.
Sudomotor dysfunction is one of the most common and earliest neurophysiological manifestations of small fiber neuropathies.
In some instances, the small fibers of the autonomic nervous system can be affected, leading to urinary or bowel problems, episodes of rapid heartbeat (palpitations), dry eyes or mouth, or abnormal sweating. They can also experience a sharp drop in blood pressure upon standing (orthostatic hypotension), which can cause dizziness, blurred vision, or fainting.
Small fiber neuropathy is considered a form of peripheral neuropathy because it affects the peripheral nervous system, which connects the brain and spinal cord to muscles and to cells that detect sensations such as touch, smell, and pain.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Sudomotor function refers to the autonomic nervous system control of sweat gland activity in response to various environmental and individual factors. Sweat production is a vital thermoregulatory mechanism used by the body to prevent heat-related illness as the evaporation of sweat is the body’s most effective method of heat reduction and the only cooling method available when the air temperature rises above skin temperature. In addition, sweat plays key roles in grip, microbial defense, and wound healing.
Dysautonomia or autonomic dysfunction is a condition in which the autonomic nervous system (ANS) does not work properly. This may affect the functioning of the heart, bladder, intestines, sweat glands, pupils, and blood vessels. Dysautonomia has many causes, not all of which may be classified as neuropathic. A number of conditions can feature dysautonomia, such as Parkinson's disease, multiple system atrophy, dementia with Lewy bodies, Ehlers-Danlos syndromes, autoimmune autonomic ganglionopathy and autonomic neuropathy, HIV/AIDS, autonomic failure, and postural orthostatic tachycardia syndrome.
Neuropathic pain is pain caused by damage or disease affecting the somatosensory system. Neuropathic pain may be associated with abnormal sensations called dysesthesia or pain from normally non-painful stimuli (allodynia). It may have continuous and/or episodic (paroxysmal) components. The latter resemble stabbings or electric shocks. Common qualities include burning or coldness, "pins and needles" sensations, numbness and itching. Up to 7-8% of the European population is affected, and in 5% of persons it may be severe.
Explores motor neuron diseases, discussing their classification, pathological signatures, etiology, and potential treatments, with a focus on Spinal Muscular Atrophy.
Computational models have been widely employed to study the electrical stimulation of the nervous system. Still, most applications either study fundamental mechanisms underlying stimulation, or address qualitative scientific questions. When quantitative qu ...
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by loss of the SMN1 gene and low SMN protein levels. Although lower motor neurons are a primary target, there is evidence that peripheral organ defects contribute to SMA. Current SMA gene ther ...
Gut -draining mesenteric and celiac lymph nodes (mLNs and celLNs) critically contribute to peripheral tolerance toward food and microbial antigens by supporting the de novo induction of regulatory T cells (Tregs). These tolerogenic properties of mLNs and c ...