Glutathione (GSH, ˌɡluːtəˈθaɪəʊn) is an antioxidant in plants, animals, fungi, and some bacteria and archaea. Glutathione is capable of preventing damage to important cellular components caused by sources such as reactive oxygen species, free radicals, peroxides, lipid peroxides, and heavy metals. It is a tripeptide with a gamma peptide linkage between the carboxyl group of the glutamate side chain and cysteine. The carboxyl group of the cysteine residue is attached by normal peptide linkage to glycine.
Glutathione biosynthesis involves two adenosine triphosphate-dependent steps:
First, γ-glutamylcysteine is synthesized from L-glutamate and cysteine. This conversion requires the enzyme glutamate–cysteine ligase (GCL, glutamate cysteine synthase). This reaction is the rate-limiting step in glutathione synthesis.
Second, glycine is added to the C-terminal of γ-glutamylcysteine. This condensation is catalyzed by glutathione synthetase.
While all animal cells are capable of synthesizing glutathione, glutathione synthesis in the liver has been shown to be essential. GCLC knockout mice die within a month of birth due to the absence of hepatic GSH synthesis.
The unusual gamma amide linkage in glutathione protects it from hydrolysis by peptidases.
Glutathione is the most abundant thiol in animal cells, ranging from 0.5 to 10 mmol/L. It is present in the cytosol and the organelles.
Human beings synthesize glutathione, but a few eukaryotes do not, including some members of Fabaceae, Entamoeba, and Giardia. The only known archaea that make glutathione are halobacteria. Some bacteria, such as "Cyanobacteria" and Pseudomonadota, can biosynthesize glutathione.
Glutathione exists in reduced (GSH) and oxidized (GSSG) states. The ratio of reduced glutathione to oxidized glutathione within cells is a measure of cellular oxidative stress where increased GSSG-to-GSH ratio is indicative of greater oxidative stress. In healthy cells and tissue, more than 90% of the total glutathione pool is in the reduced form (GSH), with the remainder in the disulfide form (GSSG).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Sitting at the crossroad of organic chemistry and medicine, this course outlines how an initial hit compound transitions into a lead candidate, and ultimately a drug, in the modern drug discovery worl
In organic chemistry, a thiol ('θaɪɒl; ), or thiol derivative, is any organosulfur compound of the form , where R represents an alkyl or other organic substituent. The functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols (that is, sulfur takes the place of oxygen in the hydroxyl () group of an alcohol), and the word is a blend of "thio-" with "alcohol". Many thiols have strong odors resembling that of garlic or rotten eggs.
A cofactor is a non-protein chemical compound or metallic ion that is required for an enzyme's role as a catalyst (a catalyst is a substance that increases the rate of a chemical reaction). Cofactors can be considered "helper molecules" that assist in biochemical transformations. The rates at which these happen are characterized in an area of study called enzyme kinetics. Cofactors typically differ from ligands in that they often derive their function by remaining bound.
Nicotinamide adenine dinucleotide phosphate, abbreviated NADP or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source'). NADPH is the reduced form of NADP, the oxidized form. NADP is used by all forms of cellular life. NADP differs from NAD by the presence of an additional phosphate group on the 2' position of the ribose ring that carries the adenine moiety.
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Redox homeostasis is a key factor in maintaining cellular function and health. The main determinant of the intracellular redox potential is ubiquitous glutathione (GSH) together with its oxidized dimer (GSSG). Importantly, both redox equilibrium and GSH ho ...
EPFL2024
, ,
Background and hypothesis: Redox dysregulation has been proposed as a convergent point of childhood trauma and the emergence of psychiatric disorders, such as schizophrenia (SCZ). A critical region particularly vulnerable to environmental insults during ad ...
Tris-(2-carboxyethyl)phosphine (TCEP) linked to agarose beads is widely used for reducing disulfide bridges in proteins and peptides. The immobilization of TCEP on beads allows efficient removal after reduction to prevent its reaction with alkylating reage ...