Summary
Glutathione (GSH, ˌɡluːtəˈθaɪəʊn) is an antioxidant in plants, animals, fungi, and some bacteria and archaea. Glutathione is capable of preventing damage to important cellular components caused by sources such as reactive oxygen species, free radicals, peroxides, lipid peroxides, and heavy metals. It is a tripeptide with a gamma peptide linkage between the carboxyl group of the glutamate side chain and cysteine. The carboxyl group of the cysteine residue is attached by normal peptide linkage to glycine. Glutathione biosynthesis involves two adenosine triphosphate-dependent steps: First, γ-glutamylcysteine is synthesized from L-glutamate and cysteine. This conversion requires the enzyme glutamate–cysteine ligase (GCL, glutamate cysteine synthase). This reaction is the rate-limiting step in glutathione synthesis. Second, glycine is added to the C-terminal of γ-glutamylcysteine. This condensation is catalyzed by glutathione synthetase. While all animal cells are capable of synthesizing glutathione, glutathione synthesis in the liver has been shown to be essential. GCLC knockout mice die within a month of birth due to the absence of hepatic GSH synthesis. The unusual gamma amide linkage in glutathione protects it from hydrolysis by peptidases. Glutathione is the most abundant thiol in animal cells, ranging from 0.5 to 10 mmol/L. It is present in the cytosol and the organelles. Human beings synthesize glutathione, but a few eukaryotes do not, including some members of Fabaceae, Entamoeba, and Giardia. The only known archaea that make glutathione are halobacteria. Some bacteria, such as "Cyanobacteria" and Pseudomonadota, can biosynthesize glutathione. Glutathione exists in reduced (GSH) and oxidized (GSSG) states. The ratio of reduced glutathione to oxidized glutathione within cells is a measure of cellular oxidative stress where increased GSSG-to-GSH ratio is indicative of greater oxidative stress. In healthy cells and tissue, more than 90% of the total glutathione pool is in the reduced form (GSH), with the remainder in the disulfide form (GSSG).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.