In communications and electronic engineering, an intermediate frequency (IF) is a frequency to which a carrier wave is shifted as an intermediate step in transmission or reception. The intermediate frequency is created by mixing the carrier signal with a local oscillator signal in a process called heterodyning, resulting in a signal at the difference or beat frequency. Intermediate frequencies are used in superheterodyne radio receivers, in which an incoming signal is shifted to an IF for amplification before final detection is done.
Conversion to an intermediate frequency is useful for several reasons. When several stages of filters are used, they can all be set to a fixed frequency, which makes them easier to build and to tune. Lower frequency transistors generally have higher gains so fewer stages are required. It's easier to make sharply selective filters at lower fixed frequencies.
There may be several such stages of intermediate frequency in a superheterodyne receiver; two or three stages are called double (alternatively, dual) or triple conversion, respectively.
Intermediate frequencies are used for three general reasons. At very high (gigahertz) frequencies, signal processing circuitry performs poorly. Active devices such as transistors cannot deliver much amplification (gain). Ordinary circuits using capacitors and inductors must be replaced with cumbersome high frequency techniques such as striplines and waveguides. So a high frequency signal is converted to a lower IF for more convenient processing. For example, in satellite dishes, the microwave downlink signal received by the dish is converted to a much lower IF at the dish so that a relatively inexpensive coaxial cable can carry the signal to the receiver inside the building. Bringing the signal in at the original microwave frequency would require an expensive waveguide.
In receivers that can be tuned to different frequencies, a second reason is to convert the various different frequencies of the stations to a common frequency for processing.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the principles of nonlinear optics, their use in photonic integrated circuits and the applications of this technology for telecommunication, spectroscopy and metrology.
The students will learn about the basic principles of wireless communication systems, including transmission and modulation schemes as well as the basic components and algorithms of a wireless receive
The course will cover the fundamentals of lasers and focus on selected practical applications using lasers in engineering. The course is divided approximately as 1/3 theory and 2/3 covering selected
Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.
In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves (electromagnetic waves of radio frequency) and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information.
Satellite television is a service that delivers television programming to viewers by relaying it from a communications satellite orbiting the Earth directly to the viewer's location. The signals are received via an outdoor parabolic antenna commonly referred to as a satellite dish and a low-noise block downconverter. A satellite receiver then decodes the desired television program for viewing on a television set. Receivers can be external set-top boxes, or a built-in television tuner.
In this letter, we introduce an optimal transport framework for inferring power distributions over both spatial location and temporal frequency. Recently, it has been shown that optimal transport is a powerful tool for estimating spatial spectra that chang ...
Advanced antenna system (AAS) is a viable option for 5G millimeter-wave (mmWave) applications. AAS single element is favored to be dual-polarized, wideband, high gain, and compact in order to be utilized for 5G antenna arrays. In this paper, a low complexi ...
The occurrence of manufacturing defects in wind turbine blade (WTB) production can result in significant increases in operation and maintenance costs of WTBs, reduce capacity factors of wind farms, and occasionally lead to severe and disastrous consequence ...