Summary
In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree p and q to form a composite cocycle of degree p + q. This defines an associative (and distributive) graded commutative product operation in cohomology, turning the cohomology of a space X into a graded ring, H∗(X), called the cohomology ring. The cup product was introduced in work of J. W. Alexander, Eduard Čech and Hassler Whitney from 1935–1938, and, in full generality, by Samuel Eilenberg in 1944. In singular cohomology, the cup product is a construction giving a product on the graded cohomology ring H∗(X) of a topological space X. The construction starts with a product of cochains: if is a p-cochain and is a q-cochain, then where σ is a singular (p + q) -simplex and is the canonical embedding of the simplex spanned by S into the -simplex whose vertices are indexed by . Informally, is the p-th front face and is the q-th back face of σ, respectively. The coboundary of the cup product of cochains and is given by The cup product of two cocycles is again a cocycle, and the product of a coboundary with a cocycle (in either order) is a coboundary. The cup product operation induces a bilinear operation on cohomology, The cup product operation in cohomology satisfies the identity so that the corresponding multiplication is graded-commutative. The cup product is functorial, in the following sense: if is a continuous function, and is the induced homomorphism in cohomology, then for all classes α, β in H *(Y). In other words, f * is a (graded) ring homomorphism. It is possible to view the cup product as induced from the following composition:in terms of the chain complexes of and , where the first map is the Künneth map and the second is the map induced by the diagonal . This composition passes to the quotient to give a well-defined map in terms of cohomology, this is the cup product. This approach explains the existence of a cup product for cohomology but not for homology: induces a map but would also induce a map , which goes the wrong way round to allow us to define a product.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (1)
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Related publications (8)
Related concepts (13)
Sheaf cohomology
In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper. Sheaves, sheaf cohomology, and spectral sequences were introduced by Jean Leray at the prisoner-of-war camp Oflag XVII-A in Austria.
Künneth theorem
In mathematics, especially in homological algebra and algebraic topology, a Künneth theorem, also called a Künneth formula, is a statement relating the homology of two objects to the homology of their product. The classical statement of the Künneth theorem relates the singular homology of two topological spaces X and Y and their product space . In the simplest possible case the relationship is that of a tensor product, but for applications it is very often necessary to apply certain tools of homological algebra to express the answer.
Differential graded algebra
In mathematics, in particular in homological algebra, a differential graded algebra is a graded associative algebra with an added chain complex structure that respects the algebra structure. TOC A differential graded algebra (or DG-algebra for short) A is a graded algebra equipped with a map which has either degree 1 (cochain complex convention) or degree −1 (chain complex convention) that satisfies two conditions: A more succinct way to state the same definition is to say that a DG-algebra is a monoid object in the .
Show more