Concept

Ultraviolet photoelectron spectroscopy

Summary
Ultraviolet photoelectron spectroscopy (UPS) refers to the measurement of kinetic energy spectra of photoelectrons emitted by molecules which have absorbed ultraviolet photons, in order to determine molecular orbital energies in the valence region. If Albert Einstein's photoelectric law is applied to a free molecule, the kinetic energy () of an emitted photoelectron is given by where h is Planck's constant, ν is the frequency of the ionizing light, and I is an ionization energy for the formation of a singly charged ion in either the ground state or an excited state. According to Koopmans' theorem, each such ionization energy may be identified with the energy of an occupied molecular orbital. The ground-state ion is formed by removal of an electron from the highest occupied molecular orbital, while excited ions are formed by removal of an electron from a lower occupied orbital. Prior to 1960, virtually all measurements of photoelectron kinetic energies were for electrons emitted from metals and other solid surfaces. In about 1956, Kai Siegbahn developed X-ray photoelectron spectroscopy (XPS) for surface chemical analysis. This method uses x-ray sources to study energy levels of atomic core electrons, and at the time had an energy resolution of about 1 eV (electronvolt). The ultraviolet photoelectron spectroscopy (UPS) was pioneered by Feodor I. Vilesov, a physicist at St. Petersburg (Leningrad) State University in Russia (USSR) in 1961 to study the photoelectron spectra of free molecules in the gas phase. The early experiments used monochromatized radiation from a hydrogen discharge and a retarding potential analyzer to measure the photoelectron energies. The PES was further developed by David W. Turner, a physical chemist at Imperial College in London and then at Oxford University, in a series of publications from 1962 to 1967. As a photon source, he used a helium discharge lamp which emits a wavelength of 58.4 nm (corresponding to an energy of 21.2 eV) in the vacuum ultraviolet region.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
CH-633: Advanced Solid State and Surface Characterization
State-of-the-art surface/thin film characterization methods of polycrystalline/nano/amorphous materials. Selected topics from thin film X-ray diffraction (GIWAXS, GISAXS, PDF), electronic and optical
CH-410: Physical and chemical analyses of materials
The course relates on the use of electromagnetic (X-Ray) and corpuscular (electrons) radiations for physical and chemical analysis of solid materials.
PHYS-724: Ultrafast Phenomena
The course will cover fundamental concepts and recent developments in the field of ultrafast spectroscopy and introduce the basic theory to understand ultrafast (10-16 - 10-9 s) phenomena in chemistry
Related publications (40)