In mathematics, series acceleration is one of a collection of sequence transformations for improving the rate of convergence of a series. Techniques for series acceleration are often applied in numerical analysis, where they are used to improve the speed of numerical integration. Series acceleration techniques may also be used, for example, to obtain a variety of identities on special functions. Thus, the Euler transform applied to the hypergeometric series gives some of the classic, well-known hypergeometric series identities.
Given a sequence
having a limit
an accelerated series is a second sequence
which converges faster to than the original sequence, in the sense that
If the original sequence is divergent, the sequence transformation acts as an extrapolation method to the antilimit .
The mappings from the original to the transformed series may be linear (as defined in the article sequence transformations), or non-linear. In general, the non-linear sequence transformations tend to be more powerful.
Two classical techniques for series acceleration are Euler's transformation of series and Kummer's transformation of series. A variety of much more rapidly convergent and special-case tools have been developed in the 20th century, including Richardson extrapolation, introduced by Lewis Fry Richardson in the early 20th century but also known and used by Katahiro Takebe in 1722; the Aitken delta-squared process, introduced by Alexander Aitken in 1926 but also known and used by Takakazu Seki in the 18th century; the epsilon method given by Peter Wynn in 1956; the Levin u-transform; and the Wilf-Zeilberger-Ekhad method or WZ method.
For alternating series, several powerful techniques, offering convergence rates from all the way to for a summation of terms, are described by Cohen et al.
A basic example of a linear sequence transformation, offering improved convergence, is Euler's transform.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
This course provides practical experience in the numerical simulation of fluid flows. Numerical methods are presented in the framework of the finite volume method. A simple solver is developed with Ma
In mathematics, a sequence transformation is an operator acting on a given space of sequences (a sequence space). Sequence transformations include linear mappings such as convolution with another sequence, and resummation of a sequence and, more generally, are commonly used for series acceleration, that is, for improving the rate of convergence of a slowly convergent sequence or series. Sequence transformations are also commonly used to compute the antilimit of a divergent series numerically, and are used in conjunction with extrapolation methods.
In numerical analysis, Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value . In essence, given the value of for several values of , we can estimate by extrapolating the estimates to . It is named after Lewis Fry Richardson, who introduced the technique in the early 20th century, though the idea was already known to Christiaan Huygens in his calculation of π. In the words of Birkhoff and Rota, "its usefulness for practical computations can hardly be overestimated.
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.
In this thesis, we conduct a comprehensive investigation into structural instabilities of both elastic and magneto-elastic beams and shells, resulting in a creative proposal to design a programmable braille reader. Methodologically, we combine numerical si ...
Turning pass-through network architectures into iterative ones, which use their own output as input, is a well-known approach for boosting performance. In this paper, we argue that such architectures offer an additional benefit: The convergence rate of the ...
For a high dimensional problem, a randomized Gram-Schmidt (RGS) algorithm is beneficial in computational costs as well as numerical stability. We apply this dimension reduction technique by random sketching to Krylov subspace methods, e.g. to the generaliz ...