Summary
Acousto-optics is a branch of physics that studies the interactions between sound waves and light waves, especially the diffraction of laser light by ultrasound (or sound in general) through an ultrasonic grating. Optics has had a very long and full history, from ancient Greece, through the renaissance and modern times. As with optics, acoustics has a history of similar duration, again starting with the ancient Greeks. In contrast, the acousto-optic effect has had a relatively short history, beginning with Brillouin predicting the diffraction of light by an acoustic wave, being propagated in a medium of interaction, in 1922. This was then confirmed with experimentation in 1932 by Debye and Sears, and also by Lucas and Biquard. The particular case of diffraction on the first order, under a certain angle of incidence, (also predicted by Brillouin), has been observed by Rytow in 1935. Raman and Nath (1937) have designed a general ideal model of interaction taking into account several orders. This model was developed by Phariseau (1956) for diffraction including only one diffraction order. In general, acousto-optic effects are based on the change of the refractive index of a medium due to the presence of sound waves in that medium. Sound waves produce a refractive index grating in the material, and it is this grating that is "seen" by the light wave. These variations in the refractive index, due to the pressure fluctuations, may be detected optically by refraction, diffraction, and interference effects, reflection may also be used. The acousto-optic effect is extensively used in the measurement and study of ultrasonic waves. However, the growing principal area of interest is in acousto-optical devices for the deflection, modulation, signal processing and frequency shifting of light beams. This is due to the increasing availability and performance of lasers, which have made the acousto-optic effect easier to observe and measure. Technical progress in both crystal growth and high frequency piezoelectric transducers has brought valuable benefits to acousto-optic components' improvements.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
MICRO-420: Selected topics in advanced optics
This course proposes a selection of different facets of modern optics and photonics.
MICRO-410: Classical and quantum photonic transducers
This course gives an introduction to transducers by both considering fundamental principles and their application in classical and quantum systems. The course builds up on the fundamental concept of c
MICRO-457: Materials processing with intelligent systems
Repeatability in laser material processing is challenging due to high-speed dynamics. To address this issue, the course provides an overview of laser theory, laser-material interaction, various types
Show more
Related lectures (7)
Pulsed Lasers: Phase Matching Techniques
Explores pulsed lasers and phase matching techniques in nonlinear optics, covering birefringent materials, modulators, Q-switching, mode-locking, and dispersion control.
Laser Amplification: Stimulated Emission and Mode-Locking
Explores laser amplification through stimulated emission and the generation of short pulses using mode-locking techniques.
Microscopy Resolution: Abbe's Theory & Fourier Terms
Covers Abbe's theory, Fourier terms, diffraction orders, and numerical aperture in microscopy resolution.
Show more
Related publications (68)

Laser Doppler Vibrometer measurements of the 3D pressure field for the estimation of the radiation force produced by an acoustic standing-wave levitator

Amit Yedidia Dolev

Acoustic levitation devices use powerful ultrasonic standing waves to levitate objects in mid-air. We have created a system and method to measure the full harmonic content of the acoustic field accurately. Our study revealed that levitated particles alter ...
Elsevier Science Sa2024

Wandering principal optical axes in van der Waals triclinic materials

Arslan Mazitov

Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matte ...
Nature Portfolio2024

Fluorescence crosstalk reduction by modulated excitation-synchronous acquisition for multispectral analysis in high-throughput droplet microfluidics

Christoph Merten, Jatin Panwar

Crosstalk between fluorescent biomarkers significantly limits the resolution of multispectral fluorescence analysis in real-time droplet-microfluidics applications. The crosstalk is a result of overlapping emission and excitation spectra of different fluor ...
ROYAL SOC CHEMISTRY2023
Show more
Related concepts (1)
Acousto-optic modulator
An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency). They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control. A piezoelectric transducer is attached to a material such as glass. An oscillating electric signal drives the transducer to vibrate, which creates sound waves in the material.