In group theory, a branch of abstract algebra, a character table is a two-dimensional table whose rows correspond to irreducible representations, and whose columns correspond to conjugacy classes of group elements. The entries consist of characters, the traces of the matrices representing group elements of the column's class in the given row's group representation. In chemistry, crystallography, and spectroscopy, character tables of point groups are used to classify e.g. molecular vibrations according to their symmetry, and to predict whether a transition between two states is forbidden for symmetry reasons. Many university level textbooks on physical chemistry, quantum chemistry, spectroscopy and inorganic chemistry devote a chapter to the use of symmetry group character tables.
The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a compact form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on any representative of the respective conjugacy class of G (because characters are class functions). The columns are labelled by (representatives of) the conjugacy classes of G. It is customary to label the first row by the character of the trivial representation, which is the trivial action of G on a 1-dimensional vector space by for all . Each entry in the first row is therefore 1. Similarly, it is customary to label the first column by the identity. The entries of the first column are the values of the irreducible characters at the identity, the degrees of the irreducible characters. Characters of degree 1 are known as linear characters.
Here is the character table of C3 = , the cyclic group with three elements and generator u:
where ω is a primitive third root of unity. The character table for general cyclic groups is (a scalar multiple of) the DFT matrix.
Another example is the character table of :
where (12) represents conjugacy class consisting of (12),(13),(23), and (123) represents conjugacy class consisting of (123),(132).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides a rigorous introduction to the ideas, methods and results of classical statistical mechanics, with an emphasis on presenting the central tools for the probabilistic description of
This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Four
The monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts
In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves.
We present an open-source program irvsp, to compute irreducible representations of electronic states for all 230 space groups with an interface to the Vienna ab-initio Simulation Package. This code is fed with plane-wave-based wavefunctions (e.g. WAVECAR) ...
We prove that the Cohn-Elkies linear programming bound for sphere packing is not sharp in dimension 6. The proof uses duality and optimization over a space of modular forms, generalizing a construction of Cohn- Triantafillou [Math. Comp. 91 (2021), pp. 491 ...
Amer Mathematical Soc2024
, ,
We prove that the Cohn-Elkies linear programming bound for sphere packing is not sharp in dimension 6. The proof uses duality and optimization over a space of modular forms, generalizing a construction of Cohn-Triantafillou to the case of odd weight and no ...