In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during the mission. As input to the Tsiolkovsky rocket equation, it determines how much propellant is required for a vehicle of given empty mass and propulsion system.
Delta-v is a scalar quantity dependent only on the desired trajectory and not on the mass of the space vehicle. For example, although more fuel is needed to transfer a heavier communication satellite from low Earth orbit to geosynchronous orbit than for a lighter one, the delta-v required is the same. Delta-v is also additive, as contrasted to rocket burn time, the latter having greater effect later in the mission when more fuel has been used up.
Tables of the delta-v required to move between different space regime are useful in the conceptual planning of space missions. In the absence of an atmosphere, the delta-v is typically the same for changes in orbit in either direction; in particular, gaining and losing speed cost an equal effort. An atmosphere can be used to slow a spacecraft by aerobraking.
A typical delta-v budget might enumerate various classes of maneuvers, delta-v per maneuver, and number of each maneuver required over the life of the mission, then simply sum the total delta-v, much like a typical financial budget. Because the delta-v needed to achieve the mission usually varies with the relative position of the gravitating bodies, launch windows are often calculated from porkchop plots that show delta-v plotted against the launch time.
The Tsiolkovsky rocket equation shows that the delta-v of a rocket (stage) is proportional to the logarithm of the fuelled-to-empty mass ratio of the vehicle, and to the specific impulse of the rocket engine. A key goal in designing space-mission trajectories is to minimize the required delta-v to reduce the size and expense of the rocket that would be needed to successfully deliver any particular payload to its destination.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Aerobraking is a spaceflight maneuver that reduces the high point of an elliptical orbit (apoapsis) by flying the vehicle through the atmosphere at the low point of the orbit (periapsis). The resulting drag slows the spacecraft. Aerobraking is used when a spacecraft requires a low orbit after arriving at a body with an atmosphere, as it requires less fuel than using propulsion to slow down. When an interplanetary vehicle arrives at its destination, it must reduce its velocity to achieve orbit or to land.
In the context of spaceflight, launch period is the collection of days and launch window is the time period on a given day during which a particular rocket must be launched in order to reach its intended target. If the rocket is not launched within a given window, it has to wait for the window on the next day of the period. Launch periods and launch windows are very dependent on both the rocket's capability and the orbit to which it is going. A launch period refers to the days that the rocket can launch to reach its intended orbit.
In spaceflight, an orbital maneuver (otherwise known as a burn) is the use of propulsion systems to change the orbit of a spacecraft. For spacecraft far from Earth (for example those in orbits around the Sun) an orbital maneuver is called a deep-space maneuver (DSM). The rest of the flight, especially in a transfer orbit, is called coasting.
The main objective of the course is to provide an overview of space propulsion systems. The course will also describe the basic design principles of propulsion systems.
This course is a "concepts" course. It introduces a variety of concepts in use in the design of a space mission, manned or unmanned, and in space operations. it is partly based on the practical space
Explores space mission design, propulsion, and re-entry techniques, including aerocapture and electric propulsion.
Evaluating and updating the obstacle avoidance velocity for an autonomous robot in real-time ensures robustness against noise and disturbances. A passive damping controller can obtain the desired motion with a torque-controlled robot, which remains complia ...
The pivot-slide model (Shegelski and Lozowski) successfully predicts the slide and curl distances of a curling rock. However, in this model, there is no dependence of the curl distance on the initial velocity, because the ratio between the pivot to sliding ...
Context. Isolated local group (LG) dwarf galaxies have evolved most or all of their life unaffected by interactions with the large LG spirals and therefore offer the opportunity to learn about the intrinsic characteristics of this class of objects. Aims. O ...