A marginal likelihood is a likelihood function that has been integrated over the parameter space. In Bayesian statistics, it represents the probability of generating the observed sample from a prior and is therefore often referred to as model evidence or simply evidence.
Given a set of independent identically distributed data points where according to some probability distribution parameterized by , where itself is a random variable described by a distribution, i.e. the marginal likelihood in general asks what the probability is, where has been marginalized out (integrated out):
The above definition is phrased in the context of Bayesian statistics in which case is called prior density and is the likelihood. The marginal likelihood quantifies the agreement between data and prior in a geometric sense made precise in de Carvalho et al. (2019). In classical (frequentist) statistics, the concept of marginal likelihood occurs instead in the context of a joint parameter , where is the actual parameter of interest, and is a non-interesting nuisance parameter. If there exists a probability distribution for , it is often desirable to consider the likelihood function only in terms of , by marginalizing out :
Unfortunately, marginal likelihoods are generally difficult to compute. Exact solutions are known for a small class of distributions, particularly when the marginalized-out parameter is the conjugate prior of the distribution of the data. In other cases, some kind of numerical integration method is needed, either a general method such as Gaussian integration or a Monte Carlo method, or a method specialized to statistical problems such as the Laplace approximation, Gibbs/Metropolis sampling, or the EM algorithm.
It is also possible to apply the above considerations to a single random variable (data point) , rather than a set of observations. In a Bayesian context, this is equivalent to the prior predictive distribution of a data point.
In Bayesian model comparison, the marginalized variables are parameters for a particular type of model, and the remaining variable is the identity of the model itself.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
This course covers the statistical physics approach to computer science problems, with an emphasis on heuristic & rigorous mathematical technics, ranging from graph theory and constraint satisfaction
Machine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified. There is no innate underlying ordering of these outcomes, but numerical labels are often attached for convenience in describing the distribution, (e.g. 1 to K).
The Bayes factor is a ratio of two competing statistical models represented by their evidence, and is used to quantify the support for one model over the other. The models in questions can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation. The Bayes factor can be thought of as a Bayesian analog to the likelihood-ratio test, although it uses the (integrated) marginal likelihood rather than the maximized likelihood.
Bayesian inference (ˈbeɪziən or ˈbeɪʒən ) is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law.
A logconcave likelihood is as important to proper statistical inference as a convex cost function is important to variational optimization. Quantization is often disregarded when writing likelihood models, ignoring the limitations of the physical detectors ...
Previous research reported that corvids preferentially cache food in a location where no food will be available or cache more of a specific food in a location where this food will not be available. Here, we consider possible explanations for these prospect ...
Objective: We predicted that accelerometry would be a viable alternative to electromyography (EMG) for assessing fundamental Transcranial Magnetic Stimulation (TMS) measurements (e.g. Resting Motor Threshold (RMT), recruitment curves, latencies). New Metho ...