Résumé
The Bayes factor is a ratio of two competing statistical models represented by their evidence, and is used to quantify the support for one model over the other. The models in questions can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation. The Bayes factor can be thought of as a Bayesian analog to the likelihood-ratio test, although it uses the (integrated) marginal likelihood rather than the maximized likelihood. As such, both quantities only coincide under simple hypotheses (e.g., two specific parameter values). Also, in contrast with null hypothesis significance testing, Bayes factors support evaluation of evidence in favor of a null hypothesis, rather than only allowing the null to be rejected or not rejected. Although conceptually simple, the computation of the Bayes factor can be challenging depending on the complexity of the model and the hypotheses. Since closed-form expressions of the marginal likelihood are generally not available, numerical approximations based on MCMC samples have been suggested. For certain special cases, simplified algebraic expressions can be derived; for instance, the Savage–Dickey density ratio in the case of a precise (equality constrained) hypothesis against an unrestricted alternative. Another approximation, derived by applying Laplace's approximation to the integrated likelihoods, is known as the Bayesian information criterion (BIC); in large data sets the Bayes factor will approach the BIC as the influence of the priors wanes. In small data sets, priors generally matter and must not be improper since the Bayes factor will be undefined if either of the two integrals in its ratio is not finite. The Bayes factor is the ratio of two marginal likelihoods; that is, the likelihoods of two statistical models integrated over the prior probabilities of their parameters.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.