Concept

Cubic graph

Summary
In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs. A bicubic graph is a cubic bipartite graph. In 1932, Ronald M. Foster began collecting examples of cubic symmetric graphs, forming the start of the Foster census. Many well-known individual graphs are cubic and symmetric, including the utility graph, the Petersen graph, the Heawood graph, the Möbius–Kantor graph, the Pappus graph, the Desargues graph, the Nauru graph, the Coxeter graph, the Tutte–Coxeter graph, the Dyck graph, the Foster graph and the Biggs–Smith graph. W. T. Tutte classified the symmetric cubic graphs by the smallest integer number s such that each two oriented paths of length s can be mapped to each other by exactly one symmetry of the graph. He showed that s is at most 5, and provided examples of graphs with each possible value of s from 1 to 5. Semi-symmetric cubic graphs include the Gray graph (the smallest semi-symmetric cubic graph), the Ljubljana graph, and the Tutte 12-cage. The Frucht graph is one of the five smallest cubic graphs without any symmetries: it possesses only a single graph automorphism, the identity automorphism. According to Brooks' theorem every connected cubic graph other than the complete graph K4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices. According to Vizing's theorem every cubic graph needs either three or four colors for an edge coloring. A 3-edge-coloring is known as a Tait coloring, and forms a partition of the edges of the graph into three perfect matchings. By Kőnig's line coloring theorem every bicubic graph has a Tait coloring. The bridgeless cubic graphs that do not have a Tait coloring are known as snarks.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.