In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria (criterion of solvability and criterion of semisimplicity) show that Killing form has a close relationship to the semisimplicity of the Lie algebras. The Killing form was essentially introduced into Lie algebra theory by in his thesis. In a historical survey of Lie theory, has described how the term "Killing form" first occurred in 1951 during one of his own reports for the Séminaire Bourbaki; it arose as a misnomer, since the form had previously been used by Lie theorists, without a name attached. Some other authors now employ the term "Cartan-Killing form". At the end of the 19th century, Killing had noted that the coefficients of the characteristic equation of a regular semisimple element of a Lie algebra are invariant under the adjoint group, from which it follows that the Killing form (i.e. the degree 2 coefficient) is invariant, but he did not make much use of the fact. A basic result that Cartan made use of was Cartan's criterion, which states that the Killing form is non-degenerate if and only if the Lie algebra is a direct sum of simple Lie algebras. Consider a Lie algebra over a field K. Every element x of defines the adjoint endomorphism ad(x) (also written as adx) of with the help of the Lie bracket, as Now, supposing is of finite dimension, the trace of the composition of two such endomorphisms defines a symmetric bilinear form with values in K, the Killing form on . The following properties follow as theorems from the above definition. The Killing form B is bilinear and symmetric. The Killing form is an invariant form, as are all other forms obtained from Casimir operators. The derivation of Casimir operators vanishes; for the Killing form, this vanishing can be written as where [ , ] is the Lie bracket. If is a simple Lie algebra then any invariant symmetric bilinear form on is a scalar multiple of the Killing form.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
PHYS-757: Axiomatic Quantum Field Theory
Presentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...). Proofs of
Related lectures (4)
Lie Algebra: Basics and Applications
Covers the basics of Lie algebra and its applications in linear equations and Einstein tensor calculations.
Conformal Symmetries in Euclidean and AdS Spaces
Explores conformal symmetries in Euclidean and AdS spaces, isometries, induced metric, Poincaré coordinates, and boundary structure.
Show more
Related publications (8)

Multi-scale approach for the prediction of atomic scale properties

Michele Ceriotti, Jigyasa Nigam, Andrea Grisafi

Electronic nearsightedness is one of the fundamental principles that governs the behavior of condensed matter and supports its description in terms of local entities such as chemical bonds. Locality also underlies the tremendous success of machine-learning ...
2021

Toda frames, harmonic maps and extended Dynkin diagrams

Katharine Felicity Turner

We consider a natural subclass of harmonic maps from a surface into G/T, namely cyclic primitive maps. Here G is any simple real Lie group (not necessarily compact), T is a Cartan subgroup and both are chosen so that there is a Coxeter automorphism on G(C) ...
Elsevier2017

The algebra of essential relations on a finite set

Jacques Thévenaz, Serge Bouc

Let X be a finite set and let k be a commutative ring. We consider the k-algebra of the monoid of all relations on X, modulo the ideal generated by the relations factorizing through a set of cardinality strictly smaller than Card(X), called inessential rel ...
Walter de Gruyter2016
Show more
Related concepts (12)
Semisimple Lie algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra , if nonzero, the following conditions are equivalent: is semisimple; the Killing form, κ(x,y) = tr(ad(x)ad(y)), is non-degenerate; has no non-zero abelian ideals; has no non-zero solvable ideals; the radical (maximal solvable ideal) of is zero.
Wilhelm Killing
Wilhelm Karl Joseph Killing (10 May 1847 – 11 February 1923) was a German mathematician who made important contributions to the theories of Lie algebras, Lie groups, and non-Euclidean geometry. Killing studied at the University of Münster and later wrote his dissertation under Karl Weierstrass and Ernst Kummer at Berlin in 1872. He taught in gymnasia (secondary schools) from 1868 to 1872. He became a professor at the seminary college Collegium Hosianum in Braunsberg (now Braniewo).
Structure constants
In mathematics, the structure constants or structure coefficients of an algebra over a field are the coefficients of the basis expansion (into linear combination of basis vectors) of the products of basis vectors. Because the product operation in the algebra is bilinear, by linearity knowing the product of basis vectors allows to compute the product of any elements (just like a matrix allows to compute the action of the linear operator on any vector by providing the action of the operator on basis vectors).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.