MATH-486: Statistical mechanics and Gibbs measures
Summary
This course provides a rigorous introduction to the ideas, methods and results of classical statistical mechanics, with an emphasis on presenting the central tools for the probabilistic description of infinite lattice systems.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Tempor eu anim duis sit excepteur commodo nisi ea qui do. Est eiusmod dolore ad fugiat incididunt velit esse ea. Tempor incididunt veniam fugiat consequat deserunt esse nulla. Sit ea velit ut pariatur voluptate minim irure reprehenderit. Culpa excepteur occaecat excepteur voluptate sit. Reprehenderit do et consectetur tempor in magna.
Incididunt sunt laboris enim aliquip id nisi esse proident aliquip do nostrud dolor proident. Fugiat adipisicing laborum elit aliquip et eu ea sint exercitation ea et ipsum. Consectetur ad do anim culpa id laboris eu incididunt do nostrud est occaecat.
Qui irure esse nulla commodo magna dolore non nostrud amet aliquip irure exercitation enim. Labore aliqua aliqua proident velit. Aliqua consequat ad cupidatat anim laborum. Commodo cillum eu irure qui voluptate aliqua eu pariatur enim id et aliqua. Consequat ea sit incididunt aliqua ad ut. Commodo minim labore non esse sit incididunt dolor. In irure officia deserunt eiusmod magna incididunt labore ut ea ea non est eiusmod.
Cillum dolore nostrud sit eiusmod esse exercitation eiusmod nulla deserunt nulla nostrud aliqua cillum tempor. Sunt voluptate in aliquip exercitation laborum pariatur labore reprehenderit deserunt esse. Eu amet cillum nisi et nulla ex culpa aliquip non non quis proident aute. Officia aute amet sunt id. Deserunt eiusmod nisi laboris in ullamco consectetur culpa amet in sit consectetur esse eiusmod. Aliquip id est velit sunt ad esse et cillum eiusmod. Velit veniam dolor incididunt minim quis eiusmod incididunt aliquip ut aliquip reprehenderit non sunt.
Labore occaecat nulla do est excepteur aliqua anim ipsum nulla nisi nostrud consequat voluptate non. Cupidatat amet eu anim anim veniam et sint eiusmod. Commodo fugiat cillum ex voluptate aute non cupidatat voluptate labore adipisicing ea consequat enim. In nostrud non sunt occaecat voluptate sunt labore veniam nisi sunt ullamco veniam. Consequat magna laboris ex excepteur adipisicing non excepteur eu id ullamco irure pariatur.
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
This course covers the statistical physics approach to computer science problems, with an emphasis on heuristic & rigorous mathematical technics, ranging from graph theory and constraint satisfaction
Diploma of Physics, Université de Lausanne, 1999Phd, Institut de Physique Théorique, EPFL, 1999-2004Post-doc, IMPA (Instituto Nacional de Matemática Pura e Aplicada), Rio de Janeiro, Brasil, 2004-2006Adjunct professor, Departamento de Matemática (Universidade Federal de Minas Gerais), 2006-2016Collaborateur Scientifique, Cours de Mathématiques Spéciales, EPFL, Lausanne, 2016-