Numeral systemA numeral system is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symbols may represent different numbers in different numeral systems. For example, "11" represents the number eleven in the decimal numeral system (today, the most common system globally), the number three in the binary numeral system (used in modern computers), and the number two in the unary numeral system (used in tallying scores).
Order of operationsIn mathematics and computer programming, the order of operations (or operator precedence) is a collection of rules that reflect conventions about which procedures to perform first in order to evaluate a given mathematical expression. For example, in mathematics and most computer languages, multiplication is granted a higher precedence than addition, and it has been this way since the introduction of modern algebraic notation. Thus, the expression 1 + 2 × 3 is interpreted to have the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9.
Additive inverseIn mathematics, the additive inverse of a number a (sometimes called the opposite of a) is the number that, when added to a, yields zero. The operation taking a number to its additive inverse is known as sign change or negation. For a real number, it reverses its sign: the additive inverse (opposite number) of a positive number is negative, and the additive inverse of a negative number is positive. Zero is the additive inverse of itself. The additive inverse of a is denoted by unary minus: −a (see also below).
Binary numberA binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" (one). The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to as a bit, or binary digit. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because of the simplicity of the language and the noise immunity in physical implementation.
CalculationA calculation is a deliberate mathematical process that transforms one or more inputs into one or more outputs or results. The term is used in a variety of senses, from the very definite arithmetical calculation of using an algorithm, to the vague heuristics of calculating a strategy in a competition, or calculating the chance of a successful relationship between two people. For example, multiplying 7 by 6 is a simple algorithmic calculation. Extracting the square root or the cube root of a number using mathematical models is a more complex algorithmic calculation.
Plus and minus signsThe plus sign and the minus sign are mathematical symbols used to represent the notions of positive and negative, respectively. In addition, represents the operation of addition, which results in a sum, while represents subtraction, resulting in a difference. Their use has been extended to many other meanings, more or less analogous. Plus and minus are Latin terms meaning "more" and "less", respectively. Though the signs now seem as familiar as the alphabet or the Hindu-Arabic numerals, they are not of great antiquity.
Multiplication signThe multiplication sign, also known as the times sign or the dimension sign, is the symbol , used in mathematics to denote the multiplication operation and its resulting product. While similar to a lowercase X (), the form is properly a four-fold rotationally symmetric saltire. The earliest known use of the symbol to represent multiplication appears in an anonymous appendix to the 1618 edition of John Napier's Mirifici Logarithmorum Canonis Descriptio.
Well-defined expressionIn mathematics, a well-defined expression or unambiguous expression is an expression whose definition assigns it a unique interpretation or value. Otherwise, the expression is said to be not well defined, ill defined or ambiguous. A function is well defined if it gives the same result when the representation of the input is changed without changing the value of the input. For instance, if takes real numbers as input, and if does not equal then is not well defined (and thus not a function).
Roman numeralsRoman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, each letter with a fixed integer value. Modern style uses only these seven: The use of Roman numerals continued long after the decline of the Roman Empire. From the 14th century on, Roman numerals began to be replaced by Arabic numerals; however, this process was gradual, and the use of Roman numerals persists in some applications to this day.
Mathematical notationMathematical notation consists of using symbols for representing operations, unspecified numbers, relations, and any other mathematical objects and assembling them into expressions and formulas. Mathematical notation is widely used in mathematics, science, and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way. For example, Albert Einstein's equation is the quantitative representation in mathematical notation of the mass–energy equivalence.